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Abstract

In this paper we discuss the structure and implementations of the planar graph-coloring
problem (PGCP). We briefly look at well-known classical algorithms used to solve the PGCP,
but primarily focus on the quantum computational angle. Grover’s search is a well-known
quantum algorithm that offers a quadratic advantage relative to its classical counterparts. We
inspect its application to the PGCP and build a corresponding quantum circuit.

Introduction

Figure 1

Mathematical and computational methods of
problem solving have grown exponentially over
the past century, providing efficient and effec-
tive solutions to various problems. Mathemat-
ical algorithms have been integrated to differ-
ent fields of human endeavor, such as finance,
health, agriculture, education, and so on. The
development of problem-oriented computational
algorithms dates back to the mid-20th century
(Knuth, 1977). Researches including Turing
(1936), Dantzig (1951), Hoare (1961), Haigh
(1993), Copeland (2004), Belvos (2013), Monta-
naro (2016), Childs et. al. (2018) have reported

compelling algorithms ranging from logic, linear
functions, universal computation to optimiza-
tions. With advancement of quantum mechan-
ics, quantum computing algorithms have also
been intensively used in the fields of optimiza-
tion, cryptography and cryptoanalysis.

Taking Nepal as a sample location to map out dif-
ferent real-life scenarios in terms of mathematical
and computational models for efficient problem
solving, a number of areas can be considered. We
can map out the location of disaster-prone areas
and based on the distance between the major ne-
cessities, allocate the appropriate resources. We
can effectively plan hydropower plant schedul-
ing, based on the energy consumption of a cer-
tain area, the number of workers, total electric-
ity production, as well as the medium of trans-
mission. We can optimize bus routing based on
distance and traffic mobilization for determinis-
tic time frames. We can also allocate network
bandwidth in a way that it meets transmission
requirements with least interference and maxi-
mize network efficiency.

Aforementioned issues, based on problem do-
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mains and requirements, fall under resource al-
location and effective scheduling. For a general
resource allocation problem, a set of resources is
to be allocated to different specifications. Differ-
ent constraints are then defined which adds ob-
jectivity to the problem. Additional constraints
can be defined to maximize the output function
based on the problems. Likewise, as a schedul-
ing problem goes, a set of works to be scheduled
for a given time based on work-specific and time-
specific parameters can be determined.

For the purpose of our paper, the problem we
shall be focusing on is to allocate specialist doc-
tors to different hospitals in the Kathmandu val-
ley such that no doctor of similar expertise lands
on the same or even adjacent hospitals at a given
period of time. The hospitals have been chosen
based on accessibility, proximity, clinical metrics
and resources. This sort of problem with adja-
cency in terms of resource allocation and schedul-
ing can be modeled using graph coloring.

Various classical algorithms have been developed
to address the graph coloring problem. However,
we have opted for the use of the quantum al-
gorithm “Grover’s algorithm” to solve the prob-
lem. After mapping the information of hospi-
tals and specialists in the graph coloring prob-
lem, we apply Grover’s algorithm which, through
repeated iterations, gives us the most effective so-
lution. The sections to follow cover the details of
mapping a graph coloring problem using differ-
ent classical algorithms as well as implementing
Grover’s algorithm.

Problem Introduction

Leading Nepali news portals have often reported
problems in health services due to unavailability
of special doctors in rural Nepal. A fairly re-
cent account of the threatened future of Nepal’s
health sector due to lack of superspecialist doc-
tors has been reported (OnlineKhabar English
News, 2023). According to Nepal Medical Coun-
cil (NMC), there are 10,080 specialist doctors as
of January, 2023. The specialist doctors have not
been mobilized properly with all the specialists

being concentrated in bigger cities, and due to
the very limited number of specialists, it is very
problematic for everyone to get access to effective
health services. Thus, we tried to generate an al-
gorithm which would allocate the specialists to
different hospitals based on pre-set constraints,
which in our case is proximity.

For our solution sampling, a total of 8 hospitals
were taken, and based on clinical facilities avail-
able and the distance, edges were defined. The
hospitals under observation are Norvic Interna-
tional Hospital, Civil Hospital, B&B Hospital,
Nepal Mediciti Hospital, Megha Hospital, Patan
Hospital, Sumeru City Hospital and Star Hos-
pital. Based on the size and distance between
the hospitals, we generated a map which would
encompass the necessary information of the hos-
pitals (vertices), and the edges. For further sim-
plicity, we take the following graph assigning a
numerical vertex to the hospitals.

Figure 2

Based on the above graph, we can know the ad-
jacent nodes.

Let E = {(0,1), (0,5), (0,6), (0,7), (1,2), (1,6),
(2,3), (2,6), (3,4), (3,6), (4,5), (4,7), (5,7), (6,7)}
be the set of all the edges in the graph. To solve
the graph coloring problem, any two vertices as-
sociated with an edge .i.e. two adjacent vertices
should not have the same color.

In our case, the color represents the specialist
doctors.

2



Graph Coloring Problem

A graph is a collection of vertices(nodes) con-
nected by the edges. Typically, vertices of graphs
are represented by names or properties. Edge is
often used to link any two vertices of the graph.
In terms of symbols we represent graphs as G,
vertices as V and edges as E. The vertices hav-
ing an edge between them are often called adja-
cent vertices. Graphs are either directed or undi-
rected. Edges of directed graphs have direction
associated with them while the edges of undi-
rected graphs don’t have any direction. All the
graphs discussed in this paper will be undirected
graphs. Undirected graphs in our paper are sim-
ple graphs, that is there won’t be more than one
edge connecting the same pair of vertices.

Graph coloring, just like its name, is a way of col-
oring vertices of the graph such that no two adja-
cent vertices share the same color. For this kind
of coloring the easiest hack is using the different
colors for each node. Since the total number of
nodes in a graph doesn’t have any restrictions,
using different colors for different nodes is not
feasible. Thus, for proper coloring of a graph, one
should color the graph using a minimum number
of colors. You can notice how we can reduce the
number of colors in Fig 1.

The lowest number of colors required to color a
graph(G) is called the chromatic number of G,
written as (G). A graph G with chromatic num-
ber (G)=k is k-chromatic. The graph G whose
vertices can be colored using k colors is called
k-colorable. Normally there are three types of
graph coloring: vertex coloring, edge coloring,
and face coloring. In this paper, we will stick
with vertex coloring as all other coloring prob-
lems can be converted into vertex coloring prob-
lems.

Figure 3

Discussing further about the chromatic number
of a graph, we will discuss one of the landmark
achievements in the field of graph theory widely
known as Four coloring Theorem. The four col-
oring theorem implies that for any planar graphs
their chromatic number is at most four. In other
words, we can always color a planar graph with
4 colors. This interesting conjecture was first
conjectured by Francis Guthrie in 1852 and re-
mained unsolved for more than a century. Finally
the major proof was given in 1977 by Appel and
Haken (K. Appel W. Haken, 1977). Their proof
was largely computer based as it required solving
too many cases. Whether this kind of computer-
ized proof actually constituted proof in the math-
ematical community is still controversial.

Note that this theorem is limited to planar
graphs. Because of this interesting boundary on
chromatic numbers for planar graphs, we will be
dealing with planar graphs in our paper. So let’s
look at what exactly are planar graphs..

Basically, a planar graph is a graph which can
be drawn in the plane such that no two edges
cross except at a vertex. But we can’t ensure if
a graph is planar just by looking at it. You can
see Fig 2 as an illustration.

Figure 4

To overcome this problem, Euler formulated a
famous theorem known as Euler’s theorem. The
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theorem states that for any planar graph, No.
of Vertices(v) - Number of Edges(e) + regions(r)
equals 2, i.e. v-e+r=2. The number 2 in this the-
orem is not actually random as you can notice 2
usually has something to do with the plane. In
this theorem, the region(r) of a planar graph is
basically sections of a flat surface separated by
a planar graph. You can look at figure 3 for its
illustration. Imagine erasing vertices from the
surface, it breaks into separate pieces, and each
piece is called a region. We also need to be aware
that there’s always one special outer region that
contains all the parts of the surface that go on
forever. And for a region, degree (deg) is the
number of edges that are adjacent to the region,
written as deg(R). As an example of Euler’s the-
orem you can see it works for the graph below.
Since, v=4, e=6 and r=4, 4-6+4=2.

Figure 5

Euler’s theorem can be proved using simple
mathematical induction (Berman Williams,
2009). Euler’s theorem itself doesn’t help us
much to see if the graph is planar since we need
to redraw the graph, but some corollary of this
theorem can be very useful for us to test the pla-
narity of a graph.

If G is a planar graph with vertices (v) and edges
(e), with v ≥ 3, then it must satisfy the inequal-
ity e ≤ 3v − 6.

Proof: We can notice that, for each region of a
planar graph, its degree is 3, and each edge is ad-

jacent to two regions. Now, we can derive that
2e =

∑
degrees of r regions of a graph. Thus,

2e = 3r and r = 2e
3
. Substituting this in Euler’s

theorem, we can prove the inequality. However,
this theorem is not two-sided so we need to be
careful. For all the planar graphs this inequal-
ity must be satisfied, but a graph satisfying this
inequality doesn’t imply that it is planar. For
example: In figure 4 you can see that v=5 and
e=10 . So, 10 is not 9, the graph is not planar.
Whereas in figure 5, v=6 and e=9 and 9 9. But
if we check, the graph is not planar.

Figure 6

Why study Graph Coloring

Problem?

Graph coloring problem is one of the most im-
portant aspects in graph theory because of its
real-life implications like scheduling, resource al-
location, assigning radio frequency, map coloring
and many others. However, till the date there is
no efficient algorithm for solving the graph col-
oring problem. It is one of the well known Np-
complete problems. Np complete problems are
the problems which don’t have any established
polynomial time algorithm. Polynomial-time al-
gorithms are considered to be efficient because
the execution times do not grow rapidly as the
problem size increases unlike exponential time al-
gorithms. Thus finding a polynomial time algo-
rithm for any of the np complete problems can
solve all of them. .

Classical Solutions

One of the popular classical algorithms for solv-
ing graph coloring problems is the Backtracking
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Algorithm. Backtracking is a classical approach
to solving graph colouring using recursion.It is
proven better than other classical and brute-force
methods, because the paths leading to false solu-
tions are terminated earlier, preventing any fur-
ther branches on that path. Although the upper
bound of time complexity for both the backtrack-
ing and brute-force methods are of O(mn).

Here, m is the number of colors and n is the
number of nodes,the average time complexity of
backtracking is lesser .Here is how backtracking
works:

We want the adjacent nodes to be of different
colors.First we make a list of nodes and a list
of colors.Now we put the first color on the first
node and move on to the adjacent node.Since
the second node can’t have the same color as the
first,the algorithm looks for the next color on the
color list and goes on till all the vertices are col-
ored as required.When the algorithm reaches a
node and can’t find any color that works,the al-
gorithm backtracks and colors the previous node
with a different color.All the wrong branches are
destroyed on their roots, and the number of it-
erations required is lesser than the brute force
approach.

One simple example of coloring the vertices of a
square (using blue and green color):

Figure 7

Grover’s Algorithm

Say we have a list of unsorted data consisting of
N elements and we want to find some desired el-
ements from that list. Mathematically, we can
define this problem as if we have a function f

such that, f(x)=1 if x is marked (desired solu-
tion) f(x)=0 Otherwise

A classical algorithm will, on average, check the
list for N/2 times to find the desired element. In
1996, Lov Grover proposed Grover’s Algorithm
that could find the desired elements in O N evo-
lutions (Grover, 1996). Grover’s algorithm uses
quantum mechanical properties: superposition
and interference and provides a quadratic speed-
up for searching unstructured databases (Saha et
al., 2015).

There are three parts of Grover’s algorithm: Ini-
tialization, Oracle, and Diffuser. Firstly all the
qubits, which are used to translate the prob-
lem we want to solve using Gorver’s algorithm,
are applied to the Hadamard gate which creates
a superposition of all the possible states with
equal amplitude. This step is called Initializa-
tion.

|ψ0⟩ =
1√
N

N−1∑
x=0

|x⟩ (1)

In the second step, the oracle function is applied
to these states in superposition (Ket s). The or-
acle Uw is designed such that it can mark the
desired item(s) in the database by flipping the
phase of that corresponding desired item. While
it flips the desired item, the other states remain
unchanged.

Uf |x⟩ =

{
− |x⟩ if x is a solution state,

|x⟩ otherwise.

(2)

Geometrically, The oracle Uw applied to ket s
can be visualized as a reflection around the set
of orthogonal states to ket w (which is the desired
state) written as,

Uw = I − 2 |w⟩ ⟨w| (3)

An important thing to note is that the oracle
is problem-based so each different problem to
be solved we need to design the oracle accord-
ingly.
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In the third step, after applying the Oracle func-
tion, we apply the diffusion operator, which re-
flects the amplitudes of the states about the
mean of all the states. The diffusion operator
does the work of amplifying the amplitude of the
solution state(s) and suppressing the amplitude
of the non-solution states.

Ud = 2 |s⟩ ⟨s| − I (4)

Geometrically, we see the action of applying dif-
fusion as a rotation of Uw |s⟩ about the uniform
superposition state (|s⟩) with an angle θ. So the
combined effect of Uw and VD on |s⟩ does the
work of rotating the |s⟩ state through an angle

θ = 2arcsin
(

1√
N

)
towards |w⟩, in one iteration

of applying Uw and VD on |s⟩. And it turns out
that when we repeat the operation of applying
Oracle and diffusion operators to the order of R

times, where R = π
4

√
N
M
, N is the number of el-

ements in the database, and M is the number of
marked states we need (Saha et al., 2015), it has
the net effect that the amplitude of the desired
answer is almost 1, while the amplitudes of un-
desired answers reduce to almost 0. So following
the measurement, we easily find the answer we
desired.

Graph Coloring Circuit

There are several methods of implementing
Grover’s search algorithm in a quantum circuit.
For our use, we developed a basic form of a quan-
tum circuit to implement Grover’s Search algo-
rithm to solve the graph coloring problem for pla-
nar graphs.

Our paper will present an implementation of
Grover’s Search algorithm to solve the graph col-
oring for a simple planar graph with 4 nodes and
4 edges (see Fig: 8). We will also present a more
general method that works for any planar graph
with n nodes and e edges between them.

Suppose, for simplicity’s sake, we have the fol-
lowing graph:

Figure 8

Since () proved that a planar graph can
be colored using 4 colors, suppose we
have the following four colors with a
two-bit binary number representation as:
Binary Digit Corresponding Color

00 Red
01 Blue
10 Green
11 Yellow

Our problem now is to assign these two-bit bi-
nary numbers (or simply these colors) to the
n = 4 nodes such that no two adjacent nodes
have the same binary numbers. To accomplish
that, let’s develop a system to keep track of the
different nodes, their colors, and the information
between adjacent nodes.

As a first step, we can take 2n = 8 qubits and
understand that the 4 back-to-back qubit pairs
represent each of the n = 4 nodes with the first
two qubits representing N1.

This way, the four pairs of qubits’ values can be
interpreted as the color in the four nodes. Sup-
pose for now that we have these eight qubits with
their values as: |01000110⟩ Because this repre-
sentation has the first two qubits’ value as 00,
so (N1) is colored blue. Likewise, this represen-
tation implies that nodes (N2), (N3) and (N4)
are colored red, blue and green respectively. In
a circuit, that would be,

6



Figure 9

Notice how after applying Grover’s algorithm,
our final output will be a 2n-bit binary number
whose leftmost two values represent N1’s color,
then the next two values represent N2’s color,
and so on until the last two values represent Nn’s
color. For our use, we’ll refer to the qubits rep-
resented by the Nn node as Nn qubits. So, the
second last pair of qubits is the N3 qubits.

Since these are the only qubits that represent
our color, we can apply the Hadamard H gate
to make them into a uniform superposition. Any
ancilla qubit we need/use later will not need to
be initialized because their final values are of no
use to us.

We now move on to designing the oracle to in-
vert the phase of the coloring combination in
which adjacent nodes have different colors. To
achieve that, we break the oracle’s function into
two parts, so that the gate implementation is
simpler. First, we need to identify the solution
states whose adjacent nodes are differently col-
ored. Second, we need to invert the phase of the
identified solution states.

For now, let’s just look at N1 and N2 from our
specific case. Since they’re adjacent, the first
part of the oracle must identify if they have the
same color. We’ll use multi-control Toffoli gates
in the following combination (see Figure 10) to
see if they have the same color and store its value

in an ancilla, which we’ll call an edge ancilla.
Note that the edge ancilla indexing is the same
as the edge indexing from the graph. This is done
for simplicity’s sake.

Figure 10

A truth table with all possible inputs in the N1

and N2 qubits shows that the edge ancilla returns
0 only when the N1 and N2 qubits have different
values (i.e., different colors). When the colors in
the adjacent nodes are the same, only one of the
Toffoli of the four flips the sign of the edge an-
cilla, making it a 1. Else, two Toffoli gates are
activated which act like inverses of one another
to give an output of 0 in the edge ancilla.

Because of their frequent use, the combination
of these Toffoli gates to check if any pair of ad-
jacent nodes Ni and Nj with edge Ek have dif-
ferent colors or not, we’ll be calling them color-
checking gates (C(i, j)) and their corresponding
edge ancilla is Ek. For ease of notation, we’ll
name the inverse of C(i, j) to be C(j, i) because
C(j, i) must have the Toffoli gates in the reverse
order of C(i, j).
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Figure 11

We now design the second part of the oracle to
flip the phase of the correct states identified in
the first part. For that, we’ll use phase kick-
back (Alsing McDonald, 2011) by using a new
ancilla, which we’ll refer to as the negative an-
cilla. We’ll again use a multi-control Toffoli gate
to flip the phase of the solution states.

In the first part of the oracle, we know we’ll have
e edge ancillas. If all of these edge ancillas re-
turn 0, we know that is a valid coloring because
the edge ancillas are 0 only when adjacent nodes
have different colors.

We now take the edge ancillas as the control and
the negative ancilla as the target in a Toffoli gate
to flip the phase only when all the edge ancillas
return 0. However, computationally, it is more
efficient to make the controls that check 1, else
we’ll need to use X gates before and after all the
controls.

Hence, in the initialization step itself, we make
all the edge ancillas to 1 to reduce the cost of
the quantum circuit. In a diagram, we would
have,

Figure 12

So, up until now, we have initialized the states,
checked which states have valid coloring and
flipped the phase of states with valid coloring.
To prevent the effect on phase due to C(i,j), we
apply C(j,i) right after the phase kickback com-
pleting our oracle.

For the diffusion operator, recall that it can be
written as

s = H⊗n |0⟩ (5)

D = 2 |s⟩ ⟨s| − I (6)

D = 2(H⊗n |0⟩) ⟨H⊗n |0⟩| − I (7)

Because D can be written as a reflection about
|0⟩ by a change of coordinates using Hadamard
gates, we can make a gate, call it M0 (Diao,
2010), that reflects a state |x⟩ about |0⟩ and ap-
ply Hadamard gates before and after the gate to
create the diffusion operator.

Mathematically, we want a gate such that,

M0 |0⟩ = |0⟩ (8)

M0 |x⟩ = − |x⟩ for x ̸= 0 (9)

Notice that M0 is essentially like an oracle that
is checking if our solution is not —0〉 or not. So,
we can again use Toffoli gates with negative con-
trols in all the Nn qubits and target in the same
negative ancilla as previously used.
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Figure 13

As a pseudo circuit, our final circuit would look
like:

Figure 14

Ideally, the total number of items t we’re looking
for in an unstructured database is known, and
theoretically, as shown above, if we run Grover’s

algorithm in the order of
√

N
t

times, we’d get

the highest probability of finding the correct out-
put.

However, since we do not know how many valid
colorings there are for an arbitrary planar graph
(i.e., we don’t know the value of t beforehand for
our cases), we run Grover’s algorithm multiple
times with a different number of iterations ac-
cording to an algorithm presented by (Boyer et
al., 1998) to find the solutions in the same time

order as O
(√

N
t

)
.

Discussion
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