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Fibonacci numbers are sequences of whole numbers arranged in such a way that every number is the sum
of the preceding two numbers. Each number is represented by Fn in the sequence.

The First 24 Fibonacci Numbers are :

n Fn n Fn n Fn n Fn

0 0 6 8 12 144 18 2584
1 1 7 13 13 233 19 4181
2 1 8 21 14 377 20 6765
3 2 9 34 15 610 21 10946
4 3 10 55 16 987 22 17711
5 5 11 89 17 1597 23 28657

The Fibonacci numbers can be calculated by using this formula Fn = Fn−1 + Fn−2 for n ≥ 1

Calculating the first few values of the Fibonacci Numbers:

n Fn−1 + Fn−2 Fn

0 0
1 1
2 1+0 1
3 1+2 3
4 2+3 5
5 3+5 8

Before we move further with exploration, let’s define one of the most important and frequently used term
in our whole research.

Period - Let (Fn) be Fibonacci sequence, we say (Fn) is p-periodic in mod m if :
Fn = Fn+p (mod m) ∀ n ∈ N

We are particularly interested in the least period π(m) because p is not unique.

Now, What happens if we reduce to modulo 5?
{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657}

→ (0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 0}.

Observation - Notice that the pattern 1011 from which we started repeats after the 20th term. This implies
that the Fibonacci numbers reduced to modulo 5, have a period of 20. This also shows an example of
calculating a period.
Now, we are trying to find π(m) for all m and see if there is any formula. We can begin by going through
numericals and making a table, and using code to speed up the process. The code is:
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l s t =[1 ,1 ]
m=( i n s e r t m here )
count = 2
for i in range ( 2 , 1 000 ) :

i f ( l s t [ i −1]+ l s t [ i −2]) < m:
l s t . append ( l s t [ i −1]+ l s t [ i −2])

i f ( l s t [ i −1]+ l s t [ i −2]) >= m:
l s t . append ( l s t [ i −1] + l s t [ i −2] − m)

count += 1
i f ( l s t [ i ] == 1) and ( l s t [ i −1] == 2 ) :

break
print ( count−1)

The first line declares the sequence, in which we are planning to write out the sequence of the Fibonacci
numbers modulo m. The next 5 lines calculate the next term from the previous two terms, and append the
new term onto the list. The last 3 lines go through the code, and determine if there has been a repetition,
and then outputs the count, which is the numbers of term in this sequence before the repetition, which by
definition, is the period.
Trying this for the first few values of m yields the table:

m πL(m) m πL(m) m πL(m) m πL(m)

1 1 9 24 17 36 25 100
2 3 10 60 18 24 26 84
3 8 11 10 19 18 27 72
4 6 12 24 20 60 28 48
5 20 13 28 21 16 29 14
6 24 14 48 22 30 30 120
7 16 15 40 23 48 31 30
8 12 16 24 24 24 32 48

The main objective of this write-up is to find π(m) from m.
We can split up all m into three cases:

1. m is prime.
2. m is a prime power
3. m is has multiple prime factors.

First case in where m is prime: We can begin by going through some numericals. Using the code to test
some prime values of m yields the table:

m π(m) m π(m)

2 3 23 48
3 8 29 14
5 20 31 30
7 16 37 76
11 10 41 40
13 28 43 88
17 36 47 32
19 18 53 108

Some immediate conjectures that we came up off the bat were that if m ≡ 3 mod 10, then π(m) = 2(p+1).
This is because π(3) = 8, π(13) = 28, π(23) = 48, etc. However, when we get to m = 113, then we have
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π(113) = 76, which is a counterexample to our conjecture, since 2(113 + 1) = 228 ̸= 76. However, note that
76 | 228, so we salvaged our conjecture into if m ≡ 3 mod 10, then π(m) | 2(p+ 1). We have not been able
to find a counterexample to this, however, we have also not been able prove it, so it remains a conjecture.
After further investigation, we found that not only did this hold true for m ≡ 3 mod 10, but also for all
m ≡ ±2 mod 5.

Another similar conjecture that we came up right off the bat was that if m ≡ 1 mod 10, then π(m) = p− 1.
This is because π(11) = 10, π(31) = 30, π(41) = 40, etc. However, when we get to m = 101, then we have
π(101) = 50, which is a counterexample to our conjecture, since 101 − 1 = 100 ̸= 50. However, note that
50 | 100, so we salvaged our conjecture into if m ≡ 1 mod 10, then π(m) | ±p − 1. Similar to above, we
haven’t been able to find a counterexample to this statement, however, at the same time, we haven’t been
able to prove it, so it remains a conjecture. After further investigation, similar to above, we found that not
only did this hold true for m ≡ 1 mod 10, we have that it holds true for all m ≡ ±1 mod 5.

We have not been able to notice anything else for primes, so this is about as far as we have gotten in finding
π(m) when m is prime.
Now, onto the second case in which m is a prime power which can be written as a pα, where p is a prime
and α is a positive integer. We can begin by doing numericals to find π(m) that fit this definition. First,
when p = 2 yields the following table:

n 2n π(2n)

1 2 3
2 4 6
3 8 12
4 16 24
5 32 48

Notice that the period of two consecutive powers of 2 differ by a factor of 2. So, we can conjecture that
π(2n+1) = 2 · π(2n) where n ≥ 1 .

We also have that π(2n) = 2 · π(2n−1) =⇒ π(2n+1) = 22 · π(2n−1). Continuing this up until we reach π(p),
yields that π(2n+1) = 2n · π(2). So, we can convert the first conjecture into the new conjecture:

π(2n) = 2n−1 · π(2).
Now, let’s consider some other numericals with different bases p. Trying p = 3, 5, 7 yield the following tables:

n 3n π(3n)

1 3 8
2 9 24
3 27 72
4 81 216
5 243 648

n 5n π(5n)

1 5 20
2 25 100
3 125 500
4 625 2500
5 3125 12500

n 7n π(7n)

1 7 16
2 49 112
3 343 784
4 2401 5488
5 16807 38416

We can see that the same pattern applies, in which the period of two consecutive powers of p differ by a
factor of p. So, we can generalize our conjecture from p = 2 into p, yielding:

π(pn) = pn−1 · π(p) where n ≥ 1

We can see that the only necessary number to calculate the period of a prime power is the period of the
prime itself.
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Now, consider the third case in which m has multiple prime factors. Let m = pn1
1 pn2

2 . . . pnk

k .

First, using the table of periods for the Fibonacci numbers above, we found the property where a | b =⇒
π(a) | π(b). This is because the sequence of Fibonacci numbers modulo b can be written as a ·k where k ∈ Z,
since a | b, so for b to repeat, a must also begin its repetition, which by definition, has to be a multiple of
π(a). So, we have that π(b) is a multiple of π(a), so we have π(a) | π(b).

We also found the property that π(m) was the lowest common multiple of the period of all prime components
of m. For example, π(20) = [π(4), π(5)].

Theorem: If m = pn1
1 pn2

2 . . . pnk

k , then π(m) = [π(pn1
1 ), π(pn2

2 ), . . . , π(pnk

k )].

Proof. By a | b =⇒ π(a) | π(b), we have that since pn1
1 | m =⇒ π(pn1

1 ) | π(m).

Similarly, we have that pn2
2 | m =⇒ π(pn2

2 ) | π(m) all the way up to π(pnk

k ) | π(m).

So, π(m) must be a multiple of π(pn1
1 ), a multiple of π(pn2

2 ), . . . , a multiple of π(pnk

k ).

In other words, π(m) is a common multiple of π(pn1
1 ), π(pn2

1 ), . . . , π(pnk

k ).

By the definition of period that we had earlier, we only care about the least number that fits this property.
Therefore, since π(m) must be a common divisor, π(m) must be the least common divisor of all the prime
components. QED.

Note that all of the prime components are in the form of prime powers, which was case 2, so we can find the
period of all numbers with multiple factors from the period of prime powers, which can be found from the
period of primes.

Now that we have explored some patterns for the period of Fibonacci Numbers, let’s take a look at some
other sequences defined by linear recursion. The next simplest sequence is probably the Lucas Numbers.
They are also defined by the recursion Ln = Ln−1 + Ln−2, however, they have the starting values L0 = 1
and L1 = 3. Calculating the first few values of the Lucas Numbers:

n Ln−1 + Ln−2 Ln n Ln−1 + Ln−2 Ln

0 1 5 7+11 18
1 3 6 11+18 29
2 1+3 4 7 18+29 47
3 3+4 7 8 29+47 76
4 4+7 11 9 47+76 123

Now, let’s take a look when we take modulo 3 of the Lucas Number sequence.

{1, 3, 4, 7, 11, 18, 29, 47, 76, 123...} → {(1, 0, 1, 1, 2, 0, 2, 2), 1, 0...} .
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Notice that this sequence repeats after the 8th term, so its period is 8. The code we used to determine the
period of Lucas numbers modulo m is very similar to the code to find the period of Fibonacci numbers. All
we had to do was change the beginning of the list into (1, 3) instead of (1, 1):

l s t =[1 ,3 ]
m=7
count = 2
for i in range ( 2 , 1 000 ) :

i f ( l s t [ i −1]+ l s t [ i −2]) < m:
l s t . append ( l s t [ i −1]+ l s t [ i −2])

i f ( l s t [ i −1]+ l s t [ i −2]) >= m:
l s t . append ( l s t [ i −1] + l s t [ i −2] − m)

count += 1
i f ( l s t [ i ] == 1) and ( l s t [ i −1] == 2 ) :

break
print ( count−1)

Now, after using this code to find the periods of different m, we have the table, where πL(m) is the period
of the Lucas Numbers modulo m:

m πL(m) m πL(m) m πL(m) m πL(m)

1 1 9 24 17 36 25 20
2 3 10 12 18 24 26 84
3 8 11 10 19 18 27 72
4 6 12 24 20 12 28 48
5 4 13 28 21 16 29 14
6 24 14 48 22 30 30 24
7 16 15 8 23 48 31 30
8 12 16 24 24 24 32 48

We can see that the two properties of the period for non-prime numbers hold the same. For example,
πL(16) = 8 · πL(2) and πL(25) = 5 · π:(5). Also, πL(20) = [πL(4), πl(5)].

Comparing this with the table of periods for Fibonacci numbers, we can see that π(m) = πL(m), except
for m ≡ 0 mod 5. In that case π(m) = 5 · πL(m). Note that π(5) = 20, πL(5) = 4, which implies
π(5) = 5 · πL(5) =⇒ π(5n) = 5 · πL(5). Using our method of finding the period using the LCM, we can
see that the latter statement is a corollary. The former statement that states π(m) = πL(m), when m ̸≡ 0
mod 5 remains a conjecture.
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Other than the Lucas Numbers, some other numbers defined by Linear Recursion include the Pell numbers,
the Tribonacci numbers, and the Jacobsthal numbers, which we will explore.

1. Pell numbers: The Pell numbers are defined by the linear recursion Pn = 2Pn−1 + Pn−2, with P0 = 0
and P1 = 1.

n 2Pn−1 + Pn−2 Pn n 2Pn−1 + Pn−2 Pn

0 0 5 2(12)+5 29
1 1 6 2(29)+12 70
2 2(1)+0 2 7 2(70)+29 169
3 2(2)+1 5 8 2(169)+70 408
4 2(2)+2 12 9 2(408)+169 985

Now, let’s take a look when we take modulo 3 of the Pell Number sequence.

{1, 2, 5, 12, 29, 70, 169, 408, 985, . . . } → {(1, 2, 0, 2, 2, 1, 0, 1), 1, 2...} .

Notice that this sequence repeats after the 8th term, so its period is 8. We can use similar code to what we
used for the Fibonacci and Pell numbers to find the periods of the Pell numbers. Doing that for the first 40
m yields the following table:

m πp(m) m πp(m) m πp(m) m πp(m) m πj(m)

1 1 9 24 17 16 25 60 33 24
2 2 10 12 18 24 26 28 34 16
3 8 11 24 19 40 27 72 35 12
4 4 12 8 20 12 28 12 36 24
5 12 13 28 21 24 29 20 37 76
6 8 14 6 22 24 30 24 38 40
7 6 15 24 23 22 31 30 39 56
8 8 16 16 24 8 32 32 40 24

Examining the table, we see that the two conjectures for finding the period of Fibonacci sequence modulo
non-prime m also hold true for the Pell numbers. For example, we have that πP (16) = 16 = 8 · 2 = 8 ·πP (2).
We also have the other conjecture holding true, for example: πP (20) = 12 = [4, 12] = [πP (4), πP (5)]. The
proof should be the exact same to the proof for Fibonacci.

2. Tribonacci Numbers
The Tribonacci series is an extended version of the Fibonacci sequence where each term is the sum of

the three preceding terms as opposed to the Fibonacci sequence where take the sum of the proceeding two
terms.

The Tribonacci Numbers are defined by the linear recursion Tn = Tn−1 + Tn−2 + Tn−3, with T0 = 0,
T1 = 1, and T2 = 1.

n Tn−1 + Tn−2 + Tn−3 Tn n Tn−1 + Tn−2 + Tn−3 Ln

0 0 5 1+2+4 7
1 1 1 6 2+4+7 13
2 0+0+1 1 7 4+7+13 24
3 0+1+1 2 8 7+13+24 44
4 1+1+2 4 9 13+24+44 81

Now, let’s take a look when we take modulo 4 of the Tribonacci Number sequence.

{1, 1, 2, 4, 7, 13, 24, 44, 81, 149, . . . } → {(1, 1, 2, 0, 3, 1, 0, 0), 1, 1, 0...} .

6



Notice that this sequence repeats after the 8th term, so its period is 8. We can use similar code to what we
used for the Fibonacci and Lucas numbers to find the periods of the Tribonacci numbers. Doing that for the
first 40 m yields the following table:

m πt(m) m πt(m) m πt(m) m πt(m) m πt(m)

1 1 9 39 17 96 25 155 33 1430
2 4 10 124 18 156 26 168 34 96
3 13 11 110 19 360 27 117 35 1488
4 8 12 104 20 248 28 48 36 312
5 31 13 168 21 624 29 140 37 469
6 52 14 48 22 220 30 1612 38 360
7 48 15 403 23 553 31 331 39 2184
8 16 16 32 24 208 32 64 40 496

Examining the table, we see that the two conjectures for finding the period of Fibonacci sequence modulo
non-prime m also hold true for the Tribonacci numbers. For example, we have that πT (16) = 32 = 8 · 4 = 8 ·
πT (2). We also have the other conjecture holding true, for example: πT (20) = 248 = [8, 52] = [πT (4), πT (5)].
The proof should be the exact same to the proof for Fibonacci.

3. Jacobsthal Numbers
The Jacobsthal numbers are defined by the linear recursion Jn = Jn−1 + 2Jn−2, with J0 = 0 and J1 = 1

n Jn−1 + 2Jn−2 Jn n Jn−1 + 2Jn−2 Jn

0 0 5 2(3)+5 11
1 1 1 6 2(5)+11 21
2 2(0)+1 1 7 2(11)+21 43
3 2(1)+1 3 8 2(21)+43 85
4 2(1)+3 5 9 2(43)+85 171

Now, let’s take a look when we take modulo 3 of the Jacobsthal Number sequence.

{1, 1, 3, 5, 11, 21, 43, 85, 171, 341, . . . } → {(1, 1, 0, 2, 2, 0), 1, 1, 0...} .

Notice that this sequence repeats after the 6th term, so its period is 6. We can use similar code to what we
used for the Fibonacci and Lucas numbers to find the periods of the Jabosthal numbers. Doing that for the
first 40 m yields the following table:

m πj(m) m πj(m) m πj(m) m πj(m) m πj(m)

1 1 9 18 17 8 25 20 33 30
2 1 10 4 18 18 26 12 34 8
3 6 11 10 19 18 27 54 35 12
4 2 12 6 20 4 28 6 36 18
5 4 13 12 21 6 29 28 37 36
6 6 14 6 22 10 30 12 38 18
7 6 15 12 23 22 31 10 39 12
8 2 16 2 24 6 32 2 40 4

Examining the table, we see that the conjecture of prime powers doesn’t hold true for Jacobsthal numbers,
but the conjecture for numbers with multiple prime factors does hold true. For example πJ(14) = 6 = [1, 6] =
[πJ(2), πJ(7)]. The proof should be the exact same to the proof for Fibonacci.
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