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1 Formal Power Series

1.1 The Ring R[[z]]

Prove that R[[x]] is a ring under the natural operations of addition and multiplication.

Addition : Let f,g € R[[2]] such that f(z) = 32 a;a’ and g(z) = 3.2 b/a7. Then f(x) + g(z) =
?O: a;zt + Oi bigd = ?O.: a; +b;)z". Since a; + b; is closed under addition as a;and b; € R we can
=0 7=0 1,7=0 J J J
say, R[[z]] is a ring under addition.

Multiplication : For proving the multiplication, we need to prove the commutative property in a
formal power series. Let f, g € R[[z]] such that f(z) = Y~ a;2" and g(x) = Z;OZO b’z’. Then

[ee] 0
= Zaixi X ijxj = Z (Z a;by_ l)
i=0 =0

k=0

Since the sum Zf:o a;bi_; is a sum of products of elements of R, the sum itself is in R since R is
closed under addition and multiplication. Therefore, the above sum is a power series in R, that is the
products fg € R[[x]].

Now, since the ring is commutative over both + and -, it follows that R[[z]] is also commutative.
Moreover, it is clearly associative over + since the ring R is itself associative over +. Next, the ring
has a zero element, i.e. 0 € R[[x]] since for any f € R[[z]], we have f + 0 = f. Similarly, it also has
an identity element, i.e. 1. Also, the additive inverse of f is the power series with the coefficients each
being the additive inverse of the coefficients of f. Thus, every element of R[[x]] has an inverse element.
Distributivity can also be easily seen from the fact that R is itself distributive.

We will now prove associativity over multiplication. Let

oe] [o0] o8]
a= Z a;x', b= 2 bix', c = Z Ci%i
i=0 i=0 i=0

Now,
So,

The above can be expanded as

o0

Z (coaobo + c1(agby + arbg) + - - e (agby + - - akbo)zk
k=0



Now, a(bc) = (be)a by commutativity. Therefore, we may use a similar approach as above to show that

[es}
Z G,oboco + a1 boC1 + blco) BRI ak(bock + bkCO))JZk

By rearranging the terms above, we get
0
Z (coaobo + co(aoby + arby) + - - - + cx(agby + - - - axbo))z* = (ab)c

This proves associativity over multiplication.

1.2 Units in R[[z]]
Definition 1. f(z) € R[[z]] then f(0) = ao
Definition 2. Units in R[] are all f and g in R[[x]] such that [f - g](x) = 1.
Examples of these units are:
)=—(=-1)
©) = Y7 @
z)=1+>" azz' fora; € R
)= (£(@—1)- 52, 2*)" for ne N
Proposition 1. If f(z) € R[[z]] and f(0) = 1, then f(z) is a unit in R[[z]].

(a
(b

) [z
) f(
(c) S(
(d) f(z
Proof. Let f(z),g(z) be in R[[z]] such that f-g = 1. We need to prove that such a power series
g exists if and only if we have f(0) = 1. Let f(z) = ap + a1z + --- and g(x) = by + bizx + - --
Thus, proving the existence of g is equivalent to proving that there exists a sequence {b;} such that
(ag + a1z + -+ )(bo + b1z + ---) = 1. Expanding this product, and combining the terms of equal degree,

we get:
(Lobo + (a0b1 + albo)l' + -+ (aobn + -+ anbo)x" +--=1

Since the RHS is simply 1, we need all terms (agb,, + - - - apbg) = 0 for all n > 1 and agby = 1.

Now, if f(0) = ap is not a unit, then we cannot find a by in R such that agbg = 1. This shows
that we cannot find the desired sequence {b;}. Thus, if f(x) is a unit in R[z], it follows that f(0) is a
unit.

We now prove the converse. That is, if f(0) is a unit in R, then there exists some sequence {b;} so
that g(x) = Y,50 bz’ and f(x)g(x) = 1. We use induction in order to do so. We will first prove that
there exists some sequence {b;};—o (i.e. a single term bg) so that agbg = 1. This finishes our base case.
Now, assume that there exists some sequence {b;}7, so that apby = 1 and for all 0 < k < n we have
(aobk + -+ -apby) = 0. We prove that there exists a sequence {b;}7%) so that the same holds for k = n + 1
as well. We have a,,+1bg + - - - agbp+1 = 0. Therefore, we have

Gni1bo + -+ a1by,
ao

bn+1 = -

Since we know b; exist for all 7 less than or equal to n, we have that b, .1 also exists, completing our
inductive step. Thus, if f(0) is a unit, then f(x) has an inverse.
O

1.3 Compositions of formal power series

We will now generalize as to when f(g(x)) where g(z) € R[[z]] is an element of R[[x]] itself.
Proposition 2. Let f,g € R[[z]]. Then, f(g(x)) € R[[z]] if and only if g(0) = 0.



Proof. Suppose g(0) = 0. Then, we can write g(z) = z* + h(z) where k is the smallest power of z in
g(x), and k # 0 since g(0) = 0. Moreover, the smallest power of  in h(z) is more than k. Also, let

flx) = Z a;xt
i=0

Therefore,
flg(x)) = ao + a19(x) + azg(x)® + - - = ao + a1 (2" + h(2)) + az(2* + h(z))* + - --

Also let

flg(x)) = co + 1 + cox® + - - -
In order to prove that f(g(z)) € R[[z]] it suffices to prove that ¢, € R for all n. So, we will work on
finding the coefficient of the 2" term, i.e. ¢,.

Consider the term a,,1(z* 4+ h(z))"*! in the expansion for f(g(x)). The term with the lowest power in
this expansion is 2("*D*  Since k # 0, it follows that (n + 1)k > n. Therefore, the coefficient ¢, of ™
is independent of a,41. By a similar argument, ¢, is independent of a; for all j > n. In other words, it

follows that "
Cp = Z a;t;
i=0

where t; € R. Note that there will be no powers of a; in the expansion since the coefficients a; are
not raised to a power in the expansion of f(g(x)). Since a;,t; € R, it follows that a;t; € R. Thus,
Do ait; € R. Therefore, for all n, we have ¢, € R, where

flgx)=co+crz+---

Therefore, by definition of a formal power series, f(g(x)) € R[[x]].
Now, suppose g(0) = ¢ # 0. Let g(z) = ¢+ h(z). Then,
flg(z)) = ap + ai(c+ h(x)) + az(c+ h(x))* + - =co+crz+ -

In the nth term of the above expansion, we have a constant ¢”. Since there are infinitely many terms
in the expansion, ¢y is an infinite sum, which is not defined in R. Therefore, ¢y ¢ R. It follows that

f(g(x)) ¢ R[[=]]. =

1.4 Multivariate Power Series

We can define the system R[[x,y]] to (R[[«]])[[y]]- Inductively, we may define

Rl[zy, . ap]] = (R[[z1, - zpa D [[2]]

Since R is a ring implies R[[x]] is a ring (base case) Then, we assume that R[[x1, %2, x3,...2%]] is a ring
Now, R[[z1,x2, X3, ...x + 1]] is (R[[z1, z2, x5, ...xk]])[[zx + 1]] which is a ring (inductive case). Thus,
by induction we can say that R[[z1,x2, X3, ...x, + 1]] is a ring.

We will now generalize to for which power series g € R[[x,y]] can we define f(g(x,y)) for any

feR[[H]?

Proposition 3. For f, g € R[[x,y]], we have that f(g(x,y)) is defined in R[[z,y]] if and only if g(0,0) #
0.

Proof. Suppose ¢g(0,0) = 0. Thus, the smallest power of x and y can be represented as b, x™y"™ where
both m and n are not 0 at the same time. So, we let g(z,y) = bppz™y™ + h(x,y). Thus,

f(g(l',y)) = f(bmnxmyn + h(%y)) =ag + al(bmnxTnyn + h(ﬂ%y)) + a2(bmnm7nyn + h(xay))Q +
= cpg + Cc10T + Co1Y + - - -

Now, consider the coefficient, c,;. We know that the term

ap+q+1(bmnxm + yn + h(:l?, y)p+q+1)



has smallest power z™P+a+1)yn(P+a+1) which is clearly greater than the power of 2Py?. Hence, c,, is
independent of ay, for all k > p + q. Therefore, we have that

ptgq

Cpq = Z aidi
=0

which is clearly an element of R. Therefore, f(g(z,y)) makes sense in R[[z,y]].
Now, if g(0,0) = ¢ which is a constant, then let g(x,y) = ¢ + h(x,y). Therefore, we have

flg9(x,y)) = ao + a1 (c+ h(z,y)) + az(c + h(z,y))*> + -

The constant term of the above expansion will be ag + ajc + asc® + - -- which is an infinite sum. This
does not make sense in R since we can only compute finite sums in R. Therefore, if ¢ # 0, then there is
no way to make sense of f(g(x,y)) as an element of R[[x,y]]. O

1.5 Polynomial Fields and Rational Functions

For some field k, we write k[z] to denote the set of polynomials with coefficients in k. We write k(z) to

denote the set
{ zixi g(2), hiz) € R[[:c]]}

We will now explore the relation between k(x), k[«] and k[[z]]. Firstly, note that k[x] € k(z) by letting
g(x) = 1. Also, clearly k[x] € k[[z]]. This is because a polynomial is a formal power series with the
coefficients equal to 0 for all ™ where n is greater than the degree of the polynomial. We now check
when an element of k(z) can be written as a formal power series. Consider an example of the power
series expansion of a rational function g(z)/h(z), t(x). Let

g(z) =22 + 1 and h(z) = 2 + 1. Then,

glx) 2z+1

h(z) 22+1

=l+a+2r—2°—22 +2°+ 25— ...

Notice how the terms of the power series are recursive. The nth term of ¢(z) can be found in terms of
the previous terms of ¢(z). In fact, this holds in general too!

Proposition 4. We claim that a rational function g(x)/h(z), i.e. an element of k(x) with h(0) # 0 can
be written as a power series t(x).

Proof. If h(0) # 0, then we have already proved that h(z) is a unit. Thus, 1/h(z) € R[[z]]. So, since
formal power series are closed under multiplication, g(z).(1/h(z)) € R[[z]]. Thus, g(z)/h(z) can be
written as a power series t(z). If h(0) = 0, then h(z) is not a unit which implies 1/h(z) ¢ R[[x]] and
thus, g(z)/h(z) cant be expressed as a formal power series. O

Proposition 5. Let t(x) = g(x)/h(x) be the power series expansion of a rational function. Then, the
terms a,, of t(x) satisfy a linear recursion. Formally, this means that there exists a number m =1 and
constants ci,...,cpy € k such that for all n that is sufficiently large,

m
Ay = Z Cilp—;
i=1

Proof. Firstly, let the degree of h(z) be m and the degree of g(x) be k. Let h(x) = by + byz + - - - byz™
and t(z) = ag + a1 + - - -. Now, since t(z) = g(z)/h(x), we may write g(z) = t(z)h(x).

Since the degree of g(x) is k, it follows that the coefficients of ™ in the expansion of the product
on the RHS is 0 for all n that is greater than k.

Now, consider some n > max(m, k). Clearly, n > k. Therefore, the coefficient of 2™ in the expansion will
be 0. Let us find the coefficient using the fact that t(x) = ag+a1x+--- and h(x) = bo+byx+- - -+ bux™.
This will be

anbO + an—lbl +oeee+ an—mbm



Since n > k, the above must be 0. Rearranging the terms, we get
anbO = _(anflbl + - anfmbm)

Since k is a field and by = h(0) # 0, we have
ap = _bal (an—lbl + - an—mbm) = Z CiQp—;
i=1

where ¢; = —by p,;. This proves that the coefficients of the power series t(x) satisfy a linear recursion. [

Proposition 6. The converse of the previous lemma also holds true. That is, if t(z) = Zn> anx™ €
k[[z]] is such that the coefficients a,, satisfy a linear recursion, then there exists some rational function
g(x)/h(x) which has a power series expansion of t(x).

Proof. We know that for ¢(x), we have
Ap = C1Qp—1 + C20p—2 + *** CmGn—m

for n that is sufficiently large enough, since we are given that the coefficients of ¢ satisfy a linear recursion.
Therefore, we have
Gp —ClQp—-1 — *** — Cplp—m = 0

Let by = 1 and b; = —c¢; when ¢ > 1. Therefore, we may write
anby + ap—1b1 + -+ ap—mbm =0

Now, consider h(z) = by + byz + - - - b,z™. Consider the product ¢(z)h(x). The coefficient of ™ in this
product will be
boan + bran_1+ - bypan_m

which is 0 by our assumption. Therefore, all terms of ¢(x)h(z) have a coefficient of 0 for n sufficiently
large. Suppose for all n > k we have that the coefficient of z* is 0 (and not 0 for n not more than k).
Therefore, t(z)h(z) = g(z) is a polynomial of degree k. Therefore, g(x)/h(x) is a rational function that
is represented by ¢(x). Therefore, we have found some rational function that is represented by #(x) given
that the coefficients of ¢(x) satisfy a linear recursion. This completes our proof. O

2 The p-adic numbers

The p-adic numbers are defined as follows:

Definition 3. The set of p-adic numbers Z, is defined as:
Z, = {(a1,as,...) | a; € Z/p'Z and a;+1 = a; (mod p')}

One can prove that the set of p-adic numbers, Z, forms a ring under term-wise addition and multi-
plication.

Proposition 7. The ring Z, is an integral domain, i.e., if for some a,b € Z, we have ab = 0, then
either a =0 or b= 0.

Proof. In Z,, we have 0 = (0,0,...). Thus, we need to prove that either a = (0,0,...) or b = (0,0,...)
given that ab = (0,0,...). First, let a = (a1,az,...) and b = (by,ba,...). Then,

ab = (albl,ang,...) = (0,0,)

This implies that we must have a;b; = 0 (mod p?) for all i. Clearly, we must also have a;b; = 0
(mod p). Since Z, is an integral domain, we must have a; = 0 (mod p) or by = 0 (mod p). Assume
without loss of generality that a; = 0 (mod p). We will prove that either a; = 0 for all ¢ or b; = 0 for all .

We will prove this by contradiction. Suppose that a; # 0 and b; # 0. Then, there exists some ay
such that a, = 0 (mod p*). Also assume without loss of generality that b; # 0 for some i < k (if the
smallest such i is greater than k, then we just exchange a and b). If ap = 0 (mod p*), then by the



definition of a p-adic number, we must have ax+1 = ar # 0 (mod pk). Thus, agy1 # 0. It follows that
for any ¢ > k, we must have a; # 0 as well as b; # 0.

Now, since ab = 0, we must have a;b; = 0 (mod p’) for all i > k. Now, we have ay_; = 0 (mod pF~1)
but ar, = 0 (mod p*). Moreover, by definition, we have ap = ar_; (mod p*~'). Therefore, it follows
that

ar = pFtmy (mod pk)

where 0 < my < p. Next, we have

k—1

ak+1EPkmo +p Ty (mOdeH)

where 0 < my < p. In general, we therefore have

apri =" g + -+ pPmg (mod p

k+i)
Let us say the smallest value of i for which b; # 0 is ¢ = r. We assumed earlier (WLOG) that r < k.
Now, just as before, we may write:

brsj=p" i1+ +p"ng  (mod p"t)

Since k > r, let k = r + | where [ is some natural number. Also, let i = r — k + j. Therefore,

brvj =beri =p" i1+ +p'mg  (mod p

k+i)

Now, vp(ak+ibr+i) = Vp(ag+i) + Vp(bgti). Since the smallest power of p in the expansion of ay4; is k.
Therefore, we have v,(ar+;) = k. Since the smallest power of p in the expansion of by, is r, we have
that vy (bkts) = r < k. Thus, vy(ar+ibkti) = kr < k?. Now, consider the case when i = k% — k + 1. We
therefore have v, (ag+1bg241) < k. This implies that

2
apz41br2i1 #0 (mod p* 1)

However, since ab = 0, we must have ag21bx241 = 0 (mod pk2+1). A contradiction. Thus, we cannot
have both a # 0 as well as b # 0. O

Let us explore what the units in Z, are. We first take an example. Consider Zz. Consider a =
(1,4,13,40,...) € Z,. Also, let b = (1,7,25,79,...). Clearly, b also is an element of Z,. Moreover,

ab=(1-1,4-7,13-25,40-79,...) = (1,1,1,1,...)

Thus, b is the inverse of a in Z,,. Since a has an inverse in Z,, it follows that a is a unit in Z,. Note that
however, a = (0,3,12,...) is not a unit in Z,. It seems that in general, a € Z,, is a unit if and only if the
first term of a is non-zero. In other words, we claim that a € Z,, is a unit if and only if a =0 (mod p).

Proposition 8. In Z,, a p-adic number u is a unit if and only if w1 # 0 (mod p)

Proof. Let u = (u1,us,...). Suppose u; = 0. Then, there is clearly no inverse for u since there is no
by € Z/pZ such that u1b;y = 1 (mod p) (0 is not a unit modulo p). Hence, if u is a unit, then it follows
that uy # 0 or equivalently, v =0 (mod p).

We now prove the other direction. Suppose v % 0 (mod p). Then, we must prove that u is a unit
in Z,. Since p is prime, if u # 0 (mod p), it means that u; # 0 (mod p). Since p is a prime, it follows
that (u1,p) = 1. Thus, uy is a unit in Z/pZ.

Now, suppose that (uy,p) = 1. Now, by definition of a p-adic number, we have ug 1 = uy (mod p*).
This in turn implies that w4, = u (mod p). Thus, (usy1,p) = 1. Hence, (upy1,p**1) = 1. Thus, upqq
is a unit in Z/pF*+17Z.

By induction, this implies that for all k, we have uy is a unit in Z/pFZ. Since the multiplication
operation is termwise in Z,, it follows that w is a unit in Z,,. O

This leads to another important result:



Proposition 9. Let a # 0 be a p-adic number. Then, there exists a unique pair (u, k) such that a = pFu
and u 1s a unit.

Proof. We will first prove existence. Let a = (a1, as,...). If a; # 0, then by the previous proposition,
we have that a itself is a unit. Thus, a = p°u where u = a.

Now, suppose that a; = 0 for some k (this automatically implies that a1, as, ..., ar = 0 by the construc-
tion of p-adic numbers) such that ag41 # 0. Now, consider the p-adic number

b= (ak+1/pk, ak+2/pk7 R )
We must first prove that b is indeed a p-adic integer.

For any i > k, by the definition of p-adics, we know that a; = ap = 0 (mod p*). Thus, a;/p* is an
integer for all a;.

Now, for some 4, we have agiiy1 = ags+; (mod pkH) by the definition of p-adics. Thus, agi;11 =
p'n 4 ag4; where 0 < n < p. Dividing both sides by p*, we get

Ak+i+1 i Ak+i
7; = p"n —+ kl
p p

Hence, taking mod p’ on both sides, we get

Ak+i+1 Ak+i i
— = (mod p*)
p* p*

Hence, we conclude that b € Z,. Now, consider the p-adic integer pFb. We get

P"b = p* (ars1/p", ansa/p", . o anin /D", akars1 /P )

= (Qht1, k425 - - oy Qhtks bt 1s - -)

Now, a; 41 = ax (mod p?), or in general, ay; = a; (mod p*) by induction on k. Thus,
k

p'b = (a1,as,...)=a

Now, clearly, ay1/p® # 0 (mod p) since ap; is nonzero. Thus, b is a unit. Thus, for arbitrary a, we
have found a specific unit b and power k such that a = p*b, which completes our proof for existence.

Now, we prove uniqueness. To do so, suppose that a = p*1u; = p*2uy. Assume WLOG that ky > k.
Then,

pPrun = pug = M (0 M un —up) = 0
Since Z,, is an integral domain, it follows that either p*2 =0 or pF17*24; —uy = 0. Since p*' is clearly

not 0, it follows that
PRy =y

If k1 > ko, then the first term of us will be 0, which is a contradiction since us is a unit. Therefore,
ki = kg. Thus, us = p’u; = u;. Hence, the pair (u, k) is unique. O

Now, we will explore some properties related to Z,[z], i.e. polynomials with coefficients in Z,,.

Theorem 1. Let f(x) € Zy[x]. Consider some ay (if there exists one) such that f(a1) =0 (mod p) such
that f'(a1) # 0 (mod p). Then, there exists a unique a € Z,, such that f(a) =0 and a = a1 (mod p).

Proof. If we prove that if there exists a root, ay to f(x) in Z/p*Z with f’(aj) # 0, then there exists a
unique a1 such that f(ag, 1) = 0in Z/p**1Z, it will by induction imply that there exists some unique
p-adic number a = (a1, a9, ...) such that f(a) = 0 in Z,. However, note the condition that ar+1 = ax
(mod p*). Let us first prove this result for k = 1.

Suppose f(a1) =0 (mod p) and f'(a1) # 0 (mod p). We will try to find some as such that f(az) =0
(mod p?) and as = a; (mod p).
fl@)=co+caz+ - +cpa”



in Z/pZ. Then, we have f(a1) = ¢y + c1a1 + -+ + cpal. Consider as = a; + mp for some integer
0 <m < p. Then, we have

flaz) = f(ar +mp) = co + c1(a1 + mp) + - -+ + cp(ar + mp)"”
=cotci(ar +mp)+ - +ep(al + na?ilmp + -+ (mp)™)

Now, if we take mod p? on both sides of the above, all terms with powers of p over 2 get cancelled to 0.
Thus, we get:

flaz) = co + ci(ay + mp) + cz(a? + 2a1mp) + - - - + ¢ (al + na?ilmp)

(co + cra1 + - - cpan) + (c1(mp) + 2ca(mp)ay + - ~ncn(mp)a7f_1)

= f(a1) + mpf'(a1) (mod p?)

Now, we know that as = ap (mod p) since ag = mp + a;. If ap is a root modulo p?, it implies
that f(az) = 0 (mod p?). Therefore, f(a1) + mpf'(a;) = 0 (mod p?). Since f(a;) = 0 (mod p), let
f(a1) = kp. So, we must have kp + mpf'(a;) = 0 (mod p). So, m = —k(f'(a1))~! (mod p). We can
do this step since f’(a1) # 0 (mod p). Thus, we have found a unique m such that f(a; + mp) = 0
(mod p?). In other words, given a value a;, we have proved that there exists a unique as such that
f(az) =0 (mod p?).

Now, suppose we are given some a such that f(az) = 0 (mod p*). We will prove that there exists
a unique ag41 such that f(azy1) =0 (mod pF*1) and axy1 = ap (mod pk).

Let f(z) = co+ -+ cpz™. Then,
flar) = co+ crap + -~ cpa =0 (mod p*)
Now, since ax,1 = ar (mod p*), we have ay,1 = pFm + ap where 0 < m < p. Therefore,

f(ak+1) =cy+ C1Qp41 + -0+ CnaZJrl
=co+ crlag +p"m) + - + ep(ap + pPm)™
= co+er(ap +p"m) + -+ enlag +nap" mp + - (mp)")
If we take mod p**! on both sides, all terms apart from the p¥ and constant terms cancel out since
2k >>= k + 1 for all positive k. Thus,
flars1) = co + c1(ap + pPm) + ca(a? + 2axp™m) + - - + ¢, (a} + naz_lpkm)
n—1

= (co + crax + -+ - cpay) + pkm(cl + 2ca), + - -nepay” )
= f(ar) + p*mf'(ax) =0 (mod p**')

Since f(ar) =0 (mod p*), we have f(ay) = pt. So, p*t + p*mf’'(ar) =0 (mod p*+'). Hence,
—t+mf'(ax) =0 (mod p)

Hence, m = t(f'(ax))™! (mod p). Since f’(ay) # 0 (mod p*), its inverse exists and is unique. Thus,

there exists a unique m, given as above, such that a1 = mp® + ay is a root of f(x) in Z/p**'Z and
— k

ags+1 = ax (mod p”).

We are given the value a; that is a root of f(x) in Z/pZ. Thus, we can find the corresponding value of ay
and hence a3 and so on. Thus, by induction, there exists a unique sequence a = (ay, as, ...) that satisfies
f(ar) =0 (mod p*) and ax41 = ar (mod p*). By definition of a p-adic number, a € Z,. Moreover, since
f(ar) = 0 (mod p¥) it follows that f(a) = 0 in Z,. Thus, there exists a unique p-adic number a € Z,
such that f(a) = 0 given a;. O

3 The p-adic Numbers Q,

3.1 As an Extension of Z,

Definition 4. We define Q, = Zp[%].



For example,
(1,4,13,...)  (3,3,3,...) (2,5,14,...)
1 * 3 * 9
Note that the above is NOT equal to

€ Q3

2 5 13
1,4,13,... 1,1,1,... — = ...
a1+ L)+ (55 )

The divided by sybmol is merely used as a notation and does not translate to the above. More generally,
any element of Q,, is:

a a
G+ — 4t
p p

By taking p”* as the common denominator, the above can be rewritten as:

aopt +a1p"t+ - +ap  a

pk pk

where a;,a € Z,. Moreover, we have that two p-adic numbers ﬁ and % are equal if and only if

ap™ = bp*.
Proposition 10. Q, is a field. Moreover, Q € Q,.

Proof. Consider some p-adic number o = ﬁ. We will prove that there exists some p-adic number 8 = %

such that o = 1 for every o € Q, that is non-zero, i.e. a # 0.

Firstly, we know that since a € Z,, we have that there exists some o’ that is a unit in Z, and ny a
non-negative integer so that a = a’p™. Let 8 € Q, be such that

b (a/)—lpk—m
1 1

The inverse of a’ exists since a’ is a unit as defined. Then,

aﬁ _ a/pn1 . (a/)—lpkfnl _ ﬁ
pk 1 pk

Now since a/pk =b/p" = ap™ = bp*, it follows that the above equals 1 if and only if p* = p*. Thus,
af = 1. Thus, we have found a 8 € Q, given a € Q,\{0} such that a8 = 1. Hence, Q, is a field.

We will now prove that Q € Q,. Consider an element of Q, say a/b. Let a = p*a’ and b = pF2¥/
where @’ and b’ are co-prime with p. Thus,

’
a

a _ kY
b P ph2
where o € Z,. Thus, any rational number is also a p-adic number. Hence Q,, contains Q. O

3.2 Q, as Completion of Q

We will first define metric spaces.

Definition 5. We call a set X along with a function (metric) d: X x X - R, (X,d), a metric space if
the following properties are satisfied for any x,y,z € X:

1. d(z,z) =0

2. Ifx # y then d(z,y) > 0
3. d(z,z) < d(z,y) + d(y, 2)
4. d(z,y) = d(y, )

For example, (Q,|-|) is a metric space.



Definition 6. For a metric space (X, d), we define a Cauchy sequence of X wrt d as follows: A sequence
(Tn)ns0 where z, € X is called a Cauchy sequence if for all e € RY, there exists some N, € N such that
for all integers m,n = N, we have d(xp, Tm) < €.

In simple terms, any sequence that should converge under the given metric is called a Cauchy sequence.
We now define what a completion with respect to a metric is.

Definition 7. Let S(x q4) be the set of Cauchy sequences in X with respect to the metric d. Then, given
two elements Tn,Yn of S(x,q), we say that xn is equivalent to yy, iff for every real number €, there exists
a natural number N such that for all integers n = N, we have d(x,,y,) < €. We denote this equivalence
by Tn ~ Yn.

Definition 8. We define the completion of X with respect to d as the set Six q)/ ~.

In more intuitive terms, the completion of a metric space X with respect to d is the set of limits of
the Cauchy sequences in X with respect to d.

As an example, R is a completion of Q with respect to the usual metric, the absolute value.

Now, we will define Q, as a completion of Q. In order to do so, we must first define the metric on
Q that yields Q.

Definition 9. Let p be a prime and a be an integer. Then, we define v,(a) to be the largest n such that
p"|a when a # 0 and to be 0 when a = 0. Now, we extend this definition to Q. Let ¢ = a/b € Q where
a and b are integers where b # 0. Then, we define v,(q) = vp(a) — v, (D).

Lemma 1. The above definition of v,() is well-defined. That is, if a/b = ¢/d = q, then we have
vp(a/b) = vy(c/d).

Proof. Suppose a/b = ¢/d such that v,(a/b) = vp(c/d) + m. Then, v,(a) — vy(b) = vp(c) — vp(d) + m.
Let a = p"ad’,b = p*2V,c = p*3¢/,d = p*+d’ with each of /., ¢, d relatively prime to p. Therefore,
k1 — koks — k4 + m. Moreover, we have a/b = p*~*24//b' and c/d = p*s=*sc’/d’. Since a/b = c/d, we

have ,

/
ki—ko & — phk3—ka <

p b p a

We can rewrite this as
pk‘l—kg a/d’ _ pk3—k4 b/C/

Now, we assumed that k1 — ko = k3 — k4 + m. Let k3 — k4 = n. So,
pn+ma/d/ — pnb/cl
which implies that p™a’d’ = b'¢’. Taking the v, of both sides, we have m = 0. Thus O

Definition 10. We define the p-adic absolute value to be as follows. Let q € Q. Then, we define
lgl, = p~ D when q # 0 and 0 when q = 0.

We will first explore some properties of v,(a) which will help us find a metric on Q that gives Q,,.
Proposition 11. For any a,b € Z, the following are true:

1. vy(ab) = vy(a) + v, (b)

2. vy(a +b) = min(vy(a), vy(b))

3. If vp(a) # vp(b), then vy(a + b) = min(v,(a), v,(b))

Proof. Let vy(a) = k1 and v,(b) = ko. WLOG, assume that k; > ko. Then, clearly a = pFa’ and
b = p*2t/ where (a/,p) = 1 and (V',p) = 1. Then:

1. We have ab = a’b'p*1**2 where (a't/,p) = 1 since each of a’ and b is co-prime to p. Hence,
vp(ab) = k1 + ke = vp(a) + vp(D).

10



2. We have a + b = a’p*t + b'p*2. Since k; > ks, we can write
a+b=pk(ap" 1)
Hence,
vp(a+b) = ko + vp(a’pklfk’" +b)

Clearly, the above is at least ks since v, (a’p*=*2+b') = 0. Hence, v,(a+b) > ko = min(v,(a), v,(b))
since we assumed that v,(a) < v, (b).

3. Since we have that v,(a) # v,(b), we know k1 > ko. Thus, a’p" %2 + b =0+ =¥ (mod p).
Since b’ is co-prime with p, we have a’p**=%2 4 ' % 0 (mod p). Hence, p t (p** %24’ + b'). Thus,
vp(a'p*r=%2 + 1) = 0. Hence, v,(a +b) = ka = v,(b) = min(v,(a),v,(b)) since we assume that
up(a) < uy(D).

O
Proposition 12. The above properties all hold for any r,s € Q.

Proof. Let r = ay/by and s = ag/by where a;,b; are integers with b; # 0. We know by definition that
vp(1r) = vp(a1) — vp(b1) and similarly v,(s) = v,(az) — v,(b2). Hence:
1. We have

a1a2

wplrs) = v, (5252 ) = va(ara) — y(tnte)

Since a; € Z we have v,(a1a2) = vp(a1) + vp(az) and similarly vy (b1b2) = vp(b1) + vp(bz). Thus,

vp(rs) = (vp(ar) = vp(b1)) + (vp(az) = vp(b2)) = vp(r) + vy(s)

2. We can write v, (r + s) as

a a a1by + ash
Up L2 = Up 2T vp(a1ba + agb1) — vy (b1b2)
by by b1bo

Now, a1bs and asby are integers. So,
vp (a1be + azb1) < min(vy,(aibe), vy(azbr))
Thus,
vp(r + 5) = min(vy(a1) + vp(b2), vp(az) + vp(br)) = (vp(b1) + vp(b2))
= min(vp(a1) — vp(b1), vp(az) — vp(b2)) = min(vy(r), vp(s))
We can legally perform the above step since v, (b1b2) is a constant.

3. If vp(a1ba) = vp(agbr), then we have vy(a1) + vp(b2) = vp(az)vp(by). Thus, by rearranging the
terms, we have v,(r) = vp(s). Thus, if v,(r) # v,(s), it follows that v,(a1b2) # vp(azbr). Hence,
vp(a1be + azbr) = min(v,(a1b2), vp(azby)). It follows directly that v,(r + s) = min(v,(r), v,(s)).

We have thus extend all the properties that hold for integers under v, to rationals. O

We will now use these properties to prove some properties regarding |-|
that (Q, |,) is a metric space.

p, which will in turn prove

Proposition 13. The following properties are true regarding |~|p:
1. |ql, = 0 and equality holds iff ¢ = 0
2. |g +rl, < max(lql,, |rl,)
3. lqrl, = lal, 7],

Proof. 1. We have [q, = p~r(@. Clearly this is at least 0 for all v,(q) since v,(q) € Q. We have
pvr(@) = 0 iff vp(q) = o0 which happens only when ¢ = 0.

11



2. We have
lg + T|p — p—vp(qﬂ") <p min(vy(q),vp(r)) _ pmaX(—vp(Q)),—vp(r)

since v,(q + r) = min(v,(q), vp(r))). Thus,
lq + 7, < max(|gl,, |],)
Clearly, equality holds when |g|, # |r|,, which follows from the property of v,

3. We have
lqr|, = p~ (1) = pmrramee () — pre (@) — g | |

O

With these properties, we may now define a new metric on Q. Consider the metric d, which is defined
as follows:

Definition 11. We define the function d,: Q x Q — R as follows: dy(x,y) = v — y|,.
Proposition 14. Q is a metric space over d,.
Proof. In order to prove this, we must prove all properties listed in the definition of a metric space.
L dy(z,z) = |z — |, =[0[, =0
2. dp(z,y) = |z — y|p > 0 when x # y by the previous proposition.

3. dy(@,2) = o — 2|, = |(z — y) + (y — 2)], By property 2 above, |(z — ) + (y — 2)|, < max(ja — |, .|y — 2I,) <
= yl, + |y — 21, since |gl, > 0. Hence, dy(, 2) < dyp(w,y) + dp(y, 2)-

4. dp(z,y) =z —yl, =y — 2|, = dp(y, z)
Thus, Q is a metric space over dp,. O
We can thus finally define Q, in terms of Q as follows:
Definition 12. We define Q, to be the completion of Q with respect to d,,. Thus, Q, = {[an] | an € Sp}
where S, denotes the set of Cauchy sequences in Q with respect to dp.
3.3 Operations in Q,
Now, we know that Q is a field with operations (+,-). We will now try to find a pair of binary operations

(+,-) on Q, such that (Q,, +,-) is a field.

Let o € Q,. Therefore, we can write a = [a] for some a € S, by definition of @,. Similarly, let
B = [b] € Qp. We define the addition of two elements in the p-adics as

a+ B =[a]l+[b] =[a+1]

and their product as

a-f=la]-[b] = [a-b]
However, we have not yet defined what addition and multiplication are in S, (a and b are elements of
Sp). We define the sum of two sequences a = (a;) and b = (b;) to be a + b = (a; + b;), i.e. the termwise

sum of the terms of the sequence. Similarly, we define their product to be a - b = (a;b;). Since both a
and b converge, it follows that both a + b as well as ab converge. Thus, S}, is closed under multiplication.

Definition 13. Let S be the set of all Cauchy sequences of Q, we define a set of equivalence classes in
S such that
S/~={[a]la € S}

[a] = {(a) ~ yP(w:) € S Jim [a; — yil, = 0}
Lemma 2. The set S/~ has a well-defined addition and multiplication
[a] + [b] ~ [a + b]
[a][b] ~ [ab]

12



Proof. We need to show that, |(a; + b;) — (a; + b;)|, = 0. To prove this, we can observe the following,

(@i +b:) = (@i +by)lp = las — a; + bi = bily
It follows that, , , ,
la; —a; +b; — blp < lai — a;lp + [bi — b,

the RHS converges to 0 as 4 — co. For multiplication, we have,
laib; — a;b;| = |aib; — asb; + a;b; + a;b;|
Jai(bi = by) + by (as — ag)lp < lai(bs — b))l + bi(ai — @)l
Jai (b = b)) + bi(as — a;)lp = laslpl (b = b))y + byl (@i — a3)l
Since (a;) and (b;) are bounded, then we can proceed:

Jaily lim |(5i = by)l + [bil,| Jim (@i — ;)] = €-0+¢-0=0

Now, we will prove that Q, is a field.

Definition 14. If X is an element of Q, and (z,) € S/~ is any Cauchy sequence representing A, we
define

Ny = lim o,
Proposition 15. Q, = S/~ is a field

Proof. Let (1/z;) denote the multiplicative inverse of (z;) in Q,. To know that 1/z,, is Cauchy, observe

the following
1 1

ZT; Zj

a;j—xi

P TjTq

Since (z,,) is Cauchy, we have that (z; — x;) is bounded by e. It follows that for a fix large N and for
every t¢,j > N, we have that for every € > 0, the following holds

P

1 1

iz Xy

<€
p

3.4 Sequences and Series in Q,

Till now, we only talked about sequences in QQ, and used them to define the system Q,. We will now
talk about sequences in Q,, itself. They can be thought of as sequences of sequences, since each element
of Qy, is itself a sequence of elements in Q. We will now extend the p-adic absolute value to even p-adic
numbers. There are two things we need to take care of here. Firstly, we only know what |q| » where
q is a rational number is, not a sequence of rational numbers. So, we need to define the notion of
p-adic absolute value for Cauchy sequences. Next, [a] is not a single sequence. It is a set of sequences.
Therefore, we need to show that for any sequence in [a], the result of |[a]|, is the same. In other words,
if z ~ y are two sequences, then we must show that |z[, = [y],,.

Definition 15. Let (z,) be a Cauchy sequence. Then, the sequence (|x,[,) converges to some real
number, say y € R. Then, we define |(x,)|, to be y. In other words, |(z,)|, = limy— o |[Tn ],

Proof. We will prove that if (z,,) is a Cauchy sequence, then (|mn|p) converges in R. So, we must prove
that for all e € R, we have that there exists some N, € N such that for all m,n > N, we have

|2nl, = zml,| < e

By the definition of a Cauchy sequence with respect to || po We have that for every e € RT, there exists
some natural number N, such that for all m,n > N, we have |z, — zm\p < €. Let us now keep € and
N, fixed. Now, consider some integers m,n > N, such that |z,[, # [2,[,. Then, we have

|2 — @, = max(|znal, , |Tml,) <€

13



Therefore, we have 0 < [2,[, < |zn|, < € (WLOG). Thus, |2,], —[2m|, < €. In general, ||z, |, — |zm],| <
€.

Now, if |z, = [#m|,, this implies that ||2,], — [zm],| =0 < € since e € R*. Thus, for all m,n > N. we
have ||z, |, — [2x[,| < e. This holds true for every value of € that is a positive real and its corresponding
Ne. Therefore, the sequence (|z,|,) converges. O

We will now show that |[a]|, is well defined where [a] is the equivalence class of a Cauchy sequence
a of Q. Recall that this is equivalent to proving that if x,, ~ y,, then |zn|p = |yn|p.

Proposition 16. If (z,), (yn) € Sp are equivalent (where equivalence is as defined before), then |(xy,)|

b=
[(yn)l,,- In other words,

n—o0

Proof. Given that (z,) ~ (y,), by definition, we have that for all € € R there exists some N, € N such
that for all n > Ne, we have |z, —yn|, < €. In other words, if (2,,) ~ (yn), then

Ji e =3l =

Let us assume for the sake of contradiction that lim,,_, |xn|p # lim,_, o0 |yn|p. Also, let us assume
WLOG that lim, o [25], > limy oo [Ynl,. Since [z, —ynl, = max(|znl,, |[ynl,) When |z,|, # |yal,. it
follows that

At on = Unly = i bl =0

However, we assumed that lim, o |yn| » < lim,, 0 |Zn|, = 0. A contradiction since the absolute value
is always positive. It follows that lim,, o [25], = limp—o0 [Ynl,. Hence, |(zn)], = [(yn)],- O

From this, one may conclude that |«| p 18 well defined for all o € Q,. Moreover, the same properties
hold for |af, for o€ Q, as in Q, which can be easily seen from the fact that |(z,,)], = lim,—o [24],,-

With the new extension of the p-adic absolute value in the p-adic numbers, we may now extend the
notion of convergence to Q, as well.

Definition 16. Consider a sequence (x,,) where x,, € Q,. We say that (z,) converges to a limit L € Q,,
iff for all e € RT, there is some natural number N, such that for alln > N, we have |z, — L|p < €. Note
that here, each xy, is itself a p-adic number. So, (x,) is essentially a sequence of sequences of rationals.

We now give the condition of convergence for a sequence in Q.
Definition 17. A sequence (a,) converges iff there exists an element of Q, that it converges to.

Proposition 17. In Q,, a sequence (x,,) converges then (|x,|,) converges inR. Moreover, limy, o0 [T, =
[lim,, 0 xn|p

Proof. Suppose (z,) converges to L € Q,. Then, by definition, we have that

Yee RTIN, e Nst Vn > N, |z, — L], <€

Now, |2, — L[, = max(|zn|,, |L[,) < €if [v,], # |L|,. Therefore, we have 0 < [z,|, < eand 0 < [L|, <€
for all real numbers € > 0. Thus, we have |[z,|, — |L[,| <e. If |z,], = |L], the previous statement still
holds. Therefore,

a2y Fonly = 121y = | fig 20

P
which proves the desired result. O

4 Power series in Q,

Definition 18. A series Y}, a; is said to converge if and only if the sequence (Sy) given by S, = P
converges.

We will now give the condition of convergence for a series in Q,. The condition turns out to be much
simpler than that in R, in which there are multiple convergence tests for series.
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Proposition 18. The series ano an, converges in Q, <= the sequence (an)n=0 converges to 0 in Q.
Proof. Consider the sequence (S,,) given by S, = Y. ;a;. We need to show that (S,,) converges if and

only if (a,) converges.

Suppose (S,,) converges. We know that, by definition, (S,) converges if and only if for all ¢ € RT
we have that there exists some natural number N, such that for all m,n > N, we have |S,, — Sn\p < €.
Consider some n > N.. Then, we clearly have that

|Sn+1 — Sn|p <e€

Now, by definition of S,,, we have S, 11 — S, = any1. Thus, \an+1|p < € for all n = N.. Therefore, in
general, we have that for every e € R™, there is some M, = N, + 1 such that for all n > M, we have
|lan|, < e. It follows that (a,) converges to 0, by definition. Note that this direction of the proof holds
in R as well. The opposite direction is what makes convergence in R more difficult.

Now, we will prove that if (a,) converges to 0, then (S,) converges. By definition, we have that for
every € € R*, there exists some natural number N, such that for all n > N, we have |a,|, < ¢. Now,
consider some integers m,n such that m > n > N.. We have

Sm*Sn:an+l+"'+am
Thus,
‘Sm - Sn|p = |an+1 + o+ am|p < max(anJrh cee 7am)

Since for all n > N, we have that a,, < €, it follows that max(an+1,-..,an) < €. Hence |S,, — Sn|p <e€
for all m,n > N..

Thus, in general, for all € € R™, we have that there exists some N, € N such that for all m,n > N,
|Sim — Snl,- Hence, (S,) converges. O

Note that the above proof holds entirely because of the fact that |a + b[, < max(lal, , [b],).

4.1 Radius of Convergence

We define the radius of convergence of a power series ano anx™ to be the value r so that the sequence
|an] ¢ converges to 0 for all ¢ < r and does not converge for ¢ > r. The following result is fundamental:

n

-1
Proposition 19. The radius of convergence of 3, - anx™ is given by r = (lim sup |an|;/")

4.2 Discs

Definition 19. For any a € Q, and r € R, we define a closed disc of radius r, centered at a to be
the set D(a;r) := {z € Qp: |2 —al, < r} and an open disc of radius v, centered at a to be the set

D(a;r™) :={2€ Qp: |2 —a|, <r}.

Now, consider f(x) = >, - anz"™ € Q,[[2]], a power series, and suppose that its radius of convergence
is 7. Therefore, we can define a function f: D(0;7~) — Q, so that for any ¢ € D(0;r~), we have

£(t) = lim (Z aktk>
k=0

Since t € D(0;r~), the above sum indeed converges, and therefore, f is well defined.

We now defined continuity in Q.

Definition 20. We say that a function f: S — Q, is continuous at a point x € S if for all e € R, there
exists some positive real § such that |x —yl, < & implies |f(z) — f(y)[, <e.

Definition 21. We say that a function f: S — Q, is continuous, if it is continuous at every point in

S.
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Proposition 20. Every function f: D(0;r~) — Q, such that

= lim Z akx
n—0o0

for all x € D(0;77) is continuous in Q.
Proof. We first prove a lemma:

Lemma 3. Let S, = Y _gay and let S = limy,_,; Sy. Then, |S], < limy o max(lasl,, ..., lanl],).
This can also be written as max(|a1|,,laz],,...). Notationally, we shall express this as max(|ak|,)n>0-

Proof. We know that

S = lim S,
n—0o0
Thus,
IS], = [lm S,
As we saw earlier, the above is equal to lim;, .o [Sn[,, which is at most lim,, .o max(|ai],, ..., |an[,). O

Let € D(0;77) be any point in D(0;77). Let y be another point in D(0;7~). Therefore, we have
2|, <7 and |y, <r. Consider some positive real . Now, suppose that there is some § € R* such that
|z —yl, < d. Now, we have

-, (3 o) < i (S

k=0

[f (@) = f(W)l,

tin, (3 otet )

» k=0

a2y P yk1)>

p

=

n—00

lim ((x —v)

k

hm (
k

Il
o

P

=

ap(@" Py P yk1)>

= |z —yl,
=0 »
By the Lemma, we may simplify the above to get:
|f(x) = f(y)l, < & — y|, max (!ctn(w”‘1 +a" Py oy T+ y"‘l)!p)
n=0

N()W,
k n—1
’xn 1 xn Qy l,yn 2 yn 1‘ é]?]fl[(’l‘" yk ’ )k
p p =1

Since [z|, <r and |y|, <, it follows that x"’kyk’1|p < pnmkpk=1 — pn=1 Therefore,

‘l'"_l + mn—2y 4. xy7z—2 + yn—1| n—1

<r
p
Thus,
_ < _ " n—l)
17@) = 1), < lo = yl, max (Jaul, 7" Y)

Now, by the definition of continuity, we must prove that for all e € R™, there exists some § € Rt such
that [z —y[, < ¢ implies |f(z) — f(y)|, <e. We can let

€

max (|an|p 7‘"—1>

)=
n=0

for any given positive real €. Then, clearly |z —y|, < ¢ implies [f(z) — f(y)|,. Therefore, there always
exists such a real number ¢ and hence f(z) is continuous. O

For an alternative proof, we will use the notion of continuity between the mapping of two topological
spaces.
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Definition 22. Let X andY be topological spaces. The map f: X — Y is continuous <= the preimage
of the open set is open.

In other words, if you have a function f mapping from one topological space X to another topological
space Y, and for any open set U < Y, the set of all points in X that map to points in U (i.e., the preimage
of U) is open in X, then f is a continuous map.

Proof. To begin, let’s prove first the following lemma:

Lemma 4. Let a,be Q, and r,s € R*, we have the following properties of D(a;r™):
i Ifbe D(a;r™), then D(a;r~) = D(b;r™).
it The open disc D(a;r~) is also a closed set.
it D(a;r~)n D(b;s™) # & < D(a;r~) < D(b;s™) or D(a;7~) 2 D(b;s™)
Proof. i Observe the following, we can rewrite x € D(a;r7) as,
|z —al, <7
|z —alp = (| —b+b—al,) <max(lz —blp, [b—alp) <r
We have that max(|z —b|,,|b—alp) is contained D(b;r~), but then |x —al|, < max(|z—b|,,|b—alp),
thus D(a;r~) < D(b;r™), and since it is given that b € D(a;r~) we also have D(b;r~) D D(a;r™).
Hence, D(a;r~) = D(b;r™) as claimed.

i By definition, D(a;r~) is an open set. We will show that it is also a closed set. Pick a boundary
point in D(a;r), and call it z, and also choose s < r. Since x is a boundary point, we have
D(a;7r) n D(z;8) # &, then Iy € D(a;r) n D(x, s), this means that |y —a| <r and |[y—x| < s < r.
Using the non-archimedean inequality, we have:

| — a| < max(Jz — yl,|y — a|) < max(s,r) <r
thus « € D(a;r) such that D(a;r) contains each of its boundary points, making D(a;r) a closed
set by definition.
15t Assume W.L.O.G that r < s. If the intersection is non-empty then there exists a ¢ in D(a;7) N
D(b; s). Then we know, from (2), that D(a;r) = D(c;r) and D(b; s) = D(c;s). Hence
D(a;r) = D(¢;r) < D(¢;s) = D(b; s)

Now to begin the proof, we define the preimage of D(y;s™) under f as,

f7HD(y;57)) = {ae D(0;r7)| f(a) € D(y;s7)}
For a sketch-proof, when these set of points in D(0; ) that is in the preimage of f are open then f is
continuous. Now, fix an element of the preimage of D(y;s™) under f, and call it ¢ such that |t|, < r.
By definition, f(t) converges in D(y;s~). By Proposition 16, it follows that |a,t™| converges to 0 in
D(y;s~). We have that |a,t"|, is a Cauchy sequence. Since a,, € Q,, it is Cauchy, then we have
lant™|p, = lanlplt™]p < € |t"|p. For which it follows that (¢™) is Cauchy since we have |a,t™|, < €
for every m > M (for a fix large M). Then it follows that ¢ converges in D(y;s™). Next, we have
that ¢t € D(y;s™), and also t € D(0;7~) then D(y;s~) n D(0;r~) = {t}. By Lemma 4, we know that
D(0;77) = D(t;7r7) < D(t;s7) = D(y; s~). Then we have a union of open disks which are the preimage
of D(y; s ) under f,
f (D) = | Ditsr)
[tlp<r

Hence it follows that f is continuous as claimed. O

Remarks 1. The characterization all power series f(x) € Qp[[x]] such that f(x) converges at every
point of the closed unit disk D(0;1) are as follows:

e The function f: D(0;r~) — D(0;17) must be continuous.

e Givent € D(0;77), the sequence of coefficient of f, given by (ay) satisfy that |a,t™|, converges to
0 in D(0;1).

e For a power series to converge to 1, it needs f(0) = 1. Since there exists g € Qp[[z]] such that
f g =1 for which multiplication is closed in Qp[[z]]. In other words, f(z)e 1+ zQ,[[x]].
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5 Exponentiation in p-adics

We define the exponentiation of z in the p-adics to be the following element of Q,[[z]]:

n

o) = 32

n=0
We see that the exp function has the following properties:
Proposition 21. We have exp(z + y) = exp(x) - exp(y) in Qp[[z, y]].

Proof. We have
2 3

exp(x )—1+x+£+%+
and ) 5

exp(y)—l—l—m-i-yf-&-%—i—
Thus

)

21

Expanding the above product and combining all terms with the same degree, we get:

1’2 y2
exp(z) - exp(y) = <1+:z:+2'+~~> (1+y+ + - )

2

eXP(m)-eXp(y)—1+($+y)+(z,+a:y+ ) i(k'iik >+

Writing the above as a summation with respect to n, we get:
n k., n—k n n\ ..k, n—k n
Ty Siheo (1)2"y (z+y)
exp(z) - exp(y) = | ( T |> =] ( , =] ——— =exp(z +y)
=S\ kl(n —k)! = n! = o

by the binomial theorem, and we are done. Hence, we have a homomorphism ¢ : (@]23 — Q,, such that
exp(x) satisfies ¢(x o y) = B(x) © 3(y) O

Proposition 22. The radius of convergence of exp(x) is piﬁ

Proof. We know that the radius, r, of convergence of any power series in the p-adics is given by
r = (limsup |an|11)/ ")~L. Therefore, we know that the radius of convergence, r of exp(z) is given by
(limsup | |p)*1. We need to therefore prove that

-1
1
(hm sup " ) =p Y@-D)
n!
P

In order to do so, we need the following lemma

Lemma 5. vy(n!) = (S (n) is the sum of all digits of n over base p)

Proof. Notice that vp(n!) =vp(n) +vp(n —1) +--- = 35, vp(l). We take v,(l) (I < n), and expand [
over base p. Take | = l,,,p™ + -+ L.p" (m <7, I, # 0), where we have v,(l) = m. Using telescoping
techniques, observe that:

“1=@-1)+@-Dp+@E-Dp*+ -+ @-1)p" —p"
I=1=@-D+@-Dp+@-1p"+ -+ @-1)p"  + (" =1)p" +--- +Lp"
We have that the sum of the digits (over base p) of | — 1 is,
Sp(l=1) =m(p—1) + 5(1) —

The reason why there is —1 on the RHS since we have [,,, — 1 from the previous equation, thus it follows
we have S,(I) — 1. We know that v,(l) = m, then solving for m, we have
1

m= =[S~ 1) = $,(0) + 1

18



Then we have,

vp(nl) = Z up(l) =

I<n

e NS 1) = S + 1]

p— I<n

Since this is a telescoping series, we have that:

vy(nl) =~ (~S,(n) +n) = n_pfpfn)

Lemma 6. limsup((v,(n!)/n) converges to 1/(p —1).

Proof. Consider some non-negative integer k. Consider the sequence of all reals v,(n!)/n where n is so
that p* < n < p**1. The maximum value of this sequence occurs when n = p*. Thus, the supremum of
the sequence v, (n!)/n when p* < n < pF*1is v,((p*)!)/p*. By Legendre’s formula

vp(nl) = BJ + L:;J o

When n = p*, this simplifies to:

Thus,
vp(n!) pF—1 1 pF-1

n o pr(p—-1) p—-1 pF

k+1

The above gives the maximum value of v,(n!) for n between p* and p**1. Thus, one may conclude that

1 pF-1
lim sup(vp,(n!)/n) = ,}LH;O (p—l > Dk )

The 1/(p — 1) term is constant. Moreover, the sequence ﬁ where z is a real number converges to

the same real number as (p¥ — 1)/(p*(p — 1)) where k is an integer since Z € R. Therefore

Hence limsup(vy(n!)/n) =1/(p — 1). O

Now, our goal is to find lim sup of the sequence |1/n!|117/". The sequence (|1/n!|11)/") can be rewritten

(pfvpu/n!)/n) _ <pvp(n!>/n)

as

Now,
lim sup (pvp(n!)/n) _ plimsup(vp(ng)/n)

since p* is a strictly increasing function with respect to k. By our lemma, we therefore have
lim sup(|1/n!]}/") = p!/*~)
Thus, r = p~*/®=1 and we are done. O

Proposition 23. For all a,b € D(0; (p’l/(pfl))_), we have a + b € D(0; (pfl/(pfl))_). Therefore, we
have exp(a + b) = exp(a) - exp(b).
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Proof. By definition, from a,b € D (0; (p*l/(Pfl))f) we have lal,,[b], < p~Y/®=1_ Thus, we have

max(lal,,[b],) < p~*/®~Y. Hence, |a+b|, < max|a|,,[b], < p~/®=Y. Thus, we have a + b €
D (0; (pfl/(pfl))_),

Now, we know

and

Thus,

. no gk . npk . no gk nopk
exp(a) - exp(b) = (Jﬂ& (Z m)) ' (J&%o (Z m)) = lim (2 o !)
k=0 k=0 k=0 k=0

We can expand the product of the summations and combine the terms of the same degree to get:
n n
a” a+ bk
5 §]—+fn<ab>

where f,(z,y) is some polynomial in Qp[z,y] such that the smallest degree of the terms is n + 1.
Therefore,

(558

by definition of exp(a + b). We know that the degree of the term with lowest degree in f(z,y) is n + 1.
Moreover, we have |z, |y|, < p~™/®=1. Assume WLOG that ||, < [y|, < p~/®~". Hence,

TM:

?r‘<>

n—=00

n k
) = lim (kz_:o (a—]:'b)> + lim f,(a,b) = exp(a +0) + lim f,(a,b)

uMs

’xk’yTH—l—k‘p < |yn+1’p <p—n/(p—1)

for any k. Moreover, for any term in f(z,y) with the power of 2 and y being s, t respectively, we must
have \J:syt|p < p P gince s +t = n + 1 for f(x,y). But, each term of f(z,y) also has coefficients.
We know that the coefficients of f(x) are at least (1/n!)?. Thus, the p-adic absolute value of a term of

f(x,y) is at most

p%p(n!)p*n/(Pfl)

Now, we know that v,(n!) <1/(p—1) as n goes to infinity as we saw earlier. Thus, the maximum value
of the p-adic absolute value of the individual terms of f(z,y) is

2—n
prt

as n approaches c0. As n approaches infinity, the above approaches 0. Thus, lim, .« |fn(a,d)] v
Hence, fy,(a,b) itself approaches 0 in Q, as we have seen earlier. Hence, exp(a + b) = exp(a) exp(b).

= 0.
[
Corollary 1. exp(na) = exp(a™) for all integers n and a € D(0; (p*l/(Pfl))f).

Proposition 24. We have |exp(z) — exp(y)|, = |z — yl,,-

Proof. We first prove that the statement is true when y = 0. When y = 0, we have exp(y) = 0. Therefore,
we need to prove that [exp(z) — 1], = |z[,. We have

exp(z) — 1= Z T

As we saw earlier, we have




We claim that the maximum absolute value is |z| . In order to do so, let us suppose for the sake of
contradiction that there is some term z™/n! with an absolute value that is more than or equal to the
absolute value of z. So, we have |z"/nl[, > |z[,, which happens if and only if \x|271 [1/nl], = 1 or

|1’L—1

|z, = [n!|,. By the definition of the p-adic absolute value, this happens if and only if

Now, ||, < p~"/®=1). Therefore, v,(x) > 1/(p — 1). Thus, we finally get v,(n!)/(n — 1) > 1/(p — 1)
which is a contradiction. Therefore, we must have that |z| p 18 the unique maximum value in the sequence
2" /nl],. Since the maximum value is unique, we have

:L‘n
= max ’n" = |z,
P “lp n=1

Now, consider any y in D (O; (p_l/(p_l))_). Therefore, we have

n

2o

n=1

This proves that [exp(z) — 1], = |z],,.

lexp(z) — exp(y)|, = [(exp(x) — 1) — (exp(y) — )|, < max(lexp(z) — 1], [exp(y) — 1],))

Since |exp(z) — 1|, = |z[,, we have the above may be written as max(|z|,,[y[,). If [z, # [yl,, we have
lexp(x) — 1], # [exp(y) — 1|,,. Therefore, we have [exp(z) — exp(y)|, = max(|z|,,[y[,) = |z —yl,,.

6 Artin-Hasse Exponential Function

Theorem 2. E(x) € Zp[[x]]

To prove this theorem, we need to prove the following Lemmas first:

Lemma 7. Let f(z) € 1+ zQ,[[x]] be a power series with p-adic rational coefficients. Then f(z) €

1+ azy[[e]] = HZ) e 1+ paz[[a]

Proof. We will begin with the assumption that f(z) € 1 + 2Z,[[z]]. We can see that the constant term

is given by, )
F(0) = f(0)” = f(07) = (1 + ai0i> - (1 + 3] aiopi> =17 -1=0

=1 =1

Thus we have that f(0)? = f(0) = 1, then it follows that f(x)? and f(zP) are both invertible formal
power series. Then there exists t(x) € 1 + pzZ,[[x]] such that ;E )2 = t(z). The reason why t¢(x) €
1 + paZ,|[[x]] is because that the coefficients of ¢(z) satisfy a linear recursion that is derived from the
product f(x)? - t(z) = f(aP). By construction, the coefficients of ¢(z) are a, = >, | c;an—1 (Im = 0,
n > 0), and (¢;) are the coefficients of f(x)P. By the multinomial theorem, the coefficients (¢;) is given by

'/(T1'7“2'7“3 (---)) such that >}, r; = p. From this, we know that the coefficients (except the constant
term) of f(x)? is a multiple of p. Hence it follows that ¢(z) € 1 + pxZ,[[x]] exists. Now, supposed
that f(2?) = f(x)P - g(z) with g(z) € 1 + prZ,[[z]]. Let f(x) = 3,50 anz™; g(x) = 3,20 bn2™. By
assumption, ag = 1, and suppose that we have the required integrality for a, with 0 < n < N—1. We will
show that the Nth coefficient of f(x)P-g(x) is equal to the Nth coefficient of (3], anz™)? +3, c n bn2"
for which this sum is just a redefinition of f(«?) if we take N — c0. The proof will proceed by induction.
To begin, let’s expand these power series to get a sense of the terms,

(Zazﬁw .y W) —Z()(Z%H 5 akm>aNxN>

k=N+1 t=0 k=N+1
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We have two cases, pt N and p | N. Suppose p t N, then there is no m € Z such that N = pm
(that would give us another Nth coefficient which is ay ). Thus we have that the Nth coefficient of

p
(Xnen @n®™)P + 25y bna™ is (’f)aNao +by =p(1)(an) + by = pan + by, while we have that the Nth
coefficient of f(z)? - g(z) is g(0)(¥)an + aobn. Since we have assumed that ap = 1, then by the linear
recursion definition of the coefficient of g(x), we have that agby = 1 then by = 1. It follows that the Nth
term of f(x)?-g(x)is (1)pan + (1)by = pan +by. The intuition behind the multiplication of f(x)? - g(x)
is just termwise multiplication, thus we can find the pairs such that they’re the Nth term. Since by
definition, g(z) € 1 4+ pZ,[[x]], it follows that by € pZ,. Now, it follows that we can always construct
the Nth coefficient using the linear-recursion definition of the coefficient of g(x) then the construction
is followed by induction. Hence both of them have the same Nth coefficient such that p f N. Also, we
can conclude that ay € Z,, since the Nth coefficient is not divisible by p? but by p only, thus it follows
that the Nth coefficient is in pZ, and an € Z,. Now for our second case, suppose that p | N, then there
exists m € Z such that N = pm. We have that the Nth coefficient of (3], anz™)? + 3 5 bn2™ is
v + (D)ay +by =dy + (Lay + by =dy +an +by. To find a?y in (Xn<n @nz™)P, consider the pth
P

P p p
term and set i = 0, observe the following:

p N-1 P
n n N n
Z AnT = Z anpT" +anNnxr + Z nT
p
n<N-—-1 ng%—l n:%—l
P P

N N-1 N-1 N
Z anpx”™ + a%xT + Z apx™ | = Z anx”™ + Z anx™ | + a%x?

N _N _ N _ _N_

nS;—l n=-<- 1 n< P 1 n=< 1

Then by the binomial theorem, it follows that we have ay as the additional term for the Nth
coefficient of (3], <y an®™)P + 2}, < bnx™. While for the Nth coefficient of f(z)? - g(x), we have a’y +

P
9(0)()an + apbn. To find the value of a'y , consider the pth term and set ¢ = 0, observe the following:

N-1 P (N/p)—1 P
i k _ i A k
a;r" + apx = a;r +anNnxT P + arx
p
i=0 kE=N+1 i=0 k=N 41
P P
(N/p)—1 (N/p)—1
i N Ey _ i k N
a;r +anxr? + arpx = a;x + apx +anzxP
P P
=0 k=41 i=0 k=241

Then by the binomial theorem, it follows that we have a’y, as the additional term for the Nth coefficient

of f(z)? - g(x). Now, it follows that we can always construct the Nth coefficient using the linear-
recursion definition of the coefficient of g(z) then the construction is followed by induction. Hence both
of them have the same Nth coefficient such that p | N. Also in our second case, we can conclude that
an € Zp, since the Nth coefficient is not divisible by p? but by p only, thus it follows that the Nth
coefficient is in pZ, and ay € Z,. Since we have successfully concluded that an € Zy, it follows that
f(x) e 1+ 2Zy[[z]]. O

Lemma 8. exp(—pz) € 1 + pZ,[[z]]

Lemma 9. gg;;ﬁ = exp(—px)

Now we are ready to prove Theorem 2.

Proof. 1t follows that E(z) € 14+2Zy[[]] by Lemma 7 due to Lemma 9, thus it follows that the coefficients
of E(z) is in Z, by Lemma 7. O
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