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1 Formal Power Series

1.1 The Ring Rrrxss

Prove that Rrrxss is a ring under the natural operations of addition and multiplication.

Addition : Let f, g P Rrrxss such that fpxq “
ř8

i“0 aix
i and gpxq “

ř8

j“0 b
jxj . Then fpxq ` gpxq “

ř8

i“0 aix
i `

ř8

j“0 b
jxj “

ř8

i,j“0pai ` bjqxi. Since ai ` bj is closed under addition as aiand bj P R we can
say, Rrrxss is a ring under addition.

Multiplication : For proving the multiplication, we need to prove the commutative property in a
formal power series. Let f, g P Rrrxss such that fpxq “

ř8

i“0 aix
i and gpxq “

ř8

j“0 b
jxj . Then

fpxqgpxq “

8
ÿ

i“0

aix
i ˆ

8
ÿ

j“0

bjxj “

8
ÿ

k“0

˜

k
ÿ

i“0

aibk´i

¸

xk

Since the sum
řk

i“0 aibk´i is a sum of products of elements of R, the sum itself is in R since R is
closed under addition and multiplication. Therefore, the above sum is a power series in R, that is the
products fg P Rrrxss.

Now, since the ring is commutative over both ` and ¨, it follows that Rrrxss is also commutative.
Moreover, it is clearly associative over ` since the ring R is itself associative over `. Next, the ring
has a zero element, i.e. 0 P Rrrxss since for any f P Rrrxss, we have f ` 0 “ f . Similarly, it also has
an identity element, i.e. 1. Also, the additive inverse of f is the power series with the coefficients each
being the additive inverse of the coefficients of f . Thus, every element of Rrrxss has an inverse element.
Distributivity can also be easily seen from the fact that R is itself distributive.

We will now prove associativity over multiplication. Let

a “

8
ÿ

i“0

aix
i, b “

8
ÿ

i“0

bix
i, c “

8
ÿ

i“0

cixi

Now,

ab “

8
ÿ

k“0

˜

k
ÿ

i“0

aibk´i

¸

xk “

8
ÿ

i“0

pix
i

So,

pabqc “

8
ÿ

k“0

˜

k
ÿ

i“0

pick´i

¸

xk “

8
ÿ

k“0

˜

k
ÿ

i“0

˜

i
ÿ

j“0

ajbi´j

¸

ck´i

¸

xk

The above can be expanded as

8
ÿ

k“0

pc0a0b0 ` c1pa0b1 ` a1b0q ` ¨ ¨ ¨ ckpa0bk ` ¨ ¨ ¨ akb0qxk
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Now, apbcq “ pbcqa by commutativity. Therefore, we may use a similar approach as above to show that

apbcq “

8
ÿ

k“0

pa0b0c0 ` a1pb0c1 ` b1c0q ` ¨ ¨ ¨ ` akpb0ck ` ¨ ¨ ¨ bkc0qqxk

By rearranging the terms above, we get

apbcq “

8
ÿ

k“0

pc0a0b0 ` c0pa0b1 ` a1b0q ` ¨ ¨ ¨ ` ckpa0bk ` ¨ ¨ ¨ akb0qqxk “ pabqc

This proves associativity over multiplication.

1.2 Units in Rrrxss

Definition 1. fpxq P Rrrxss then fp0q “ a0

Definition 2. Units in Rrrxss are all f and g in Rrrxss such that rf ¨ gspxq “ 1.

Examples of these units are:

(a) fpxq “ ´px ´ 1q

(b) fpxq “
ř8

i“0 x
i

(c) fpxq “ 1 `
řn

i“1 aix
i for ai P R

(d) fpxq “ p˘px ´ 1q ¨
ř8

i“0 x
iqn for n P N

Proposition 1. If fpxq P Rrrxss and fp0q “ 1, then fpxq is a unit in Rrrxss.

Proof. Let fpxq, gpxq be in Rrrxss such that f ¨ g “ 1. We need to prove that such a power series
g exists if and only if we have fp0q “ 1. Let fpxq “ a0 ` a1x ` ¨ ¨ ¨ and gpxq “ b0 ` b1x ` ¨ ¨ ¨ .
Thus, proving the existence of g is equivalent to proving that there exists a sequence tbiu such that
pa0 ` a1x ` ¨ ¨ ¨ qpb0 ` b1x ` ¨ ¨ ¨ q “ 1. Expanding this product, and combining the terms of equal degree,
we get:

a0b0 ` pa0b1 ` a1b0qx ` ¨ ¨ ¨ ` pa0bn ` ¨ ¨ ¨ ` anb0qxn ` ¨ ¨ ¨ “ 1

Since the RHS is simply 1, we need all terms pa0bn ` ¨ ¨ ¨ anb0q “ 0 for all n ě 1 and a0b0 “ 1.

Now, if fp0q “ a0 is not a unit, then we cannot find a b0 in R such that a0b0 “ 1. This shows
that we cannot find the desired sequence tbiu. Thus, if fpxq is a unit in Rrxs, it follows that fp0q is a
unit.

We now prove the converse. That is, if fp0q is a unit in R, then there exists some sequence tbiu so
that gpxq “

ř

iě0 bix
i and fpxqgpxq “ 1. We use induction in order to do so. We will first prove that

there exists some sequence tbiui“0 (i.e. a single term b0) so that a0b0 “ 1. This finishes our base case.
Now, assume that there exists some sequence tbiu

n
i“0 so that a0b0 “ 1 and for all 0 ă k ď n we have

pa0bk ` ¨ ¨ ¨ akb0q “ 0. We prove that there exists a sequence tbiu
n`1
i“0 so that the same holds for k “ n` 1

as well. We have an`1b0 ` ¨ ¨ ¨ a0bn`1 “ 0. Therefore, we have

bn`1 “ ´
an`1b0 ` ¨ ¨ ¨ ` a1bn

a0

Since we know bi exist for all i less than or equal to n, we have that bn`1 also exists, completing our
inductive step. Thus, if fp0q is a unit, then fpxq has an inverse.

1.3 Compositions of formal power series

We will now generalize as to when fpgpxqq where gpxq P Rrrxss is an element of Rrrxss itself.

Proposition 2. Let f, g P Rrrxss. Then, fpgpxqq P Rrrxss if and only if gp0q “ 0.
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Proof. Suppose gp0q “ 0. Then, we can write gpxq “ xk ` hpxq where k is the smallest power of x in
gpxq, and k ‰ 0 since gp0q “ 0. Moreover, the smallest power of x in hpxq is more than k. Also, let

fpxq “

8
ÿ

i“0

aix
i

Therefore,

fpgpxqq “ a0 ` a1gpxq ` a2gpxq2 ` ¨ ¨ ¨ “ a0 ` a1pxk ` hpxqq ` a2pxk ` hpxqq2 ` ¨ ¨ ¨

Also let
fpgpxqq “ c0 ` c1x ` c2x

2 ` ¨ ¨ ¨

In order to prove that fpgpxqq P Rrrxss it suffices to prove that cn P R for all n. So, we will work on
finding the coefficient of the xn term, i.e. cn.

Consider the term an`1pxk ` hpxqqn`1 in the expansion for fpgpxqq. The term with the lowest power in
this expansion is xpn`1qk. Since k ‰ 0, it follows that pn ` 1qk ą n. Therefore, the coefficient cn of xn

is independent of an`1. By a similar argument, cn is independent of aj for all j ą n. In other words, it
follows that

cn “

n
ÿ

i“0

aiti

where ti P R. Note that there will be no powers of ai in the expansion since the coefficients ai are
not raised to a power in the expansion of fpgpxqq. Since ai, ti P R, it follows that aiti P R. Thus,
řn

i“0 aiti P R. Therefore, for all n, we have cn P R, where

fpgpxqq “ c0 ` c1x ` ¨ ¨ ¨

Therefore, by definition of a formal power series, fpgpxqq P Rrrxss.

Now, suppose gp0q “ c ‰ 0. Let gpxq “ c ` hpxq. Then,

fpgpxqq “ a0 ` a1pc ` hpxqq ` a2pc ` hpxqq2 ` ¨ ¨ ¨ “ c0 ` c1x ` ¨ ¨ ¨

In the nth term of the above expansion, we have a constant cn. Since there are infinitely many terms
in the expansion, c0 is an infinite sum, which is not defined in R. Therefore, c0 R R. It follows that
fpgpxqq R Rrrxss.

1.4 Multivariate Power Series

We can define the system Rrrx, yss to pRrrxssqrryss. Inductively, we may define

Rrrx1, . . . , xkss “ pRrrx1, . . . , xk´1ssqrrxkss

Since R is a ring implies Rrrxss is a ring (base case) Then, we assume that Rrrx1, x2, x3, ...xkss is a ring
Now, Rrrx1, x2, X3, ...xk ` 1ss is pRrrx1, x2, x3, ...xkssqrrxk ` 1ss which is a ring (inductive case). Thus,
by induction we can say that Rrrx1, x2, X3, ...xn ` 1ss is a ring.

We will now generalize to for which power series g P Rrrx, yss can we define fpgpx, yqq for any
f P Rrrtss?

Proposition 3. For f, g P Rrrx, yss, we have that fpgpx, yqq is defined in Rrrx, yss if and only if gp0, 0q ‰

0.

Proof. Suppose gp0, 0q “ 0. Thus, the smallest power of x and y can be represented as bmnx
myn where

both m and n are not 0 at the same time. So, we let gpx, yq “ bmnx
myn ` hpx, yq. Thus,

fpgpx, yqq “ fpbmnx
myn ` hpx, yqq “ a0 ` a1pbmnx

myn ` hpx, yqq ` a2pbmnx
myn ` hpx, yqq2 ` ¨ ¨ ¨

“ c00 ` c10x ` c01y ` ¨ ¨ ¨

Now, consider the coefficient, cpq. We know that the term

ap`q`1pbmnx
m ` yn ` hpx, yqp`q`1q
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has smallest power xmpp`q`1qynpp`q`1q which is clearly greater than the power of xpyq. Hence, cpq is
independent of ak for all k ą p ` q. Therefore, we have that

cpq “

p`q
ÿ

i“0

aidi

which is clearly an element of R. Therefore, fpgpx, yqq makes sense in Rrrx, yss.

Now, if gp0, 0q “ c which is a constant, then let gpx, yq “ c ` hpx, yq. Therefore, we have

fpgpx, yqq “ a0 ` a1pc ` hpx, yqq ` a2pc ` hpx, yqq2 ` ¨ ¨ ¨

The constant term of the above expansion will be a0 ` a1c ` a2c
2 ` ¨ ¨ ¨ which is an infinite sum. This

does not make sense in R since we can only compute finite sums in R. Therefore, if c ‰ 0, then there is
no way to make sense of fpgpx, yqq as an element of Rrrx, yss.

1.5 Polynomial Fields and Rational Functions

For some field k, we write krxs to denote the set of polynomials with coefficients in k. We write kpxq to
denote the set

"

gpxq

hpxq

∣∣∣∣ gpxq, hpxq P Rrrxss

*

We will now explore the relation between kpxq, krxs and krrxss. Firstly, note that krxs P kpxq by letting
gpxq “ 1. Also, clearly krxs P krrxss. This is because a polynomial is a formal power series with the
coefficients equal to 0 for all xn where n is greater than the degree of the polynomial. We now check
when an element of kpxq can be written as a formal power series. Consider an example of the power
series expansion of a rational function gpxq{hpxq, tpxq. Let

gpxq “ 2x ` 1 and hpxq “ x1 ` 1. Then,

gpxq

hpxq
“

2x ` 1

x2 ` 1
“ 1 ` x ` 2x ´ x3 ´ 2x4 ` x5 ` 2x6 ´ ¨ ¨ ¨

Notice how the terms of the power series are recursive. The nth term of tpxq can be found in terms of
the previous terms of tpxq. In fact, this holds in general too!

Proposition 4. We claim that a rational function gpxq{hpxq, i.e. an element of kpxq with hp0q ‰ 0 can
be written as a power series tpxq.

Proof. If hp0q ‰ 0, then we have already proved that hpxq is a unit. Thus, 1{hpxq P Rrrxss. So, since
formal power series are closed under multiplication, gpxq.p1{hpxqq P Rrrxss. Thus, gpxq{hpxq can be
written as a power series tpxq. If hp0q “ 0, then hpxq is not a unit which implies 1{hpxq R Rrrxss and
thus, gpxq{hpxq cant be expressed as a formal power series.

Proposition 5. Let tpxq “ gpxq{hpxq be the power series expansion of a rational function. Then, the
terms an of tpxq satisfy a linear recursion. Formally, this means that there exists a number m ě 1 and
constants c1, . . . , cm P k such that for all n that is sufficiently large,

an “

m
ÿ

i“1

cian´i

Proof. Firstly, let the degree of hpxq be m and the degree of gpxq be k. Let hpxq “ b0 ` b1x ` ¨ ¨ ¨ bmxm

and tpxq “ a0 ` a1x ` ¨ ¨ ¨ . Now, since tpxq “ gpxq{hpxq, we may write gpxq “ tpxqhpxq.

Since the degree of gpxq is k, it follows that the coefficients of xn in the expansion of the product
on the RHS is 0 for all n that is greater than k.

Now, consider some n ą maxpm, kq. Clearly, n ą k. Therefore, the coefficient of xn in the expansion will
be 0. Let us find the coefficient using the fact that tpxq “ a0`a1x`¨ ¨ ¨ and hpxq “ b0`b1x`¨ ¨ ¨`bmxm.
This will be

anb0 ` an´1b1 ` ¨ ¨ ¨ ` an´mbm
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Since n ą k, the above must be 0. Rearranging the terms, we get

anb0 “ ´pan´1b1 ` ¨ ¨ ¨ an´mbmq

Since k is a field and b0 “ hp0q ‰ 0, we have

an “ ´b´1
0 pan´1b1 ` ¨ ¨ ¨ an´mbmq “

m
ÿ

i“1

cian´i

where ci “ ´b´1
0 bi. This proves that the coefficients of the power series tpxq satisfy a linear recursion.

Proposition 6. The converse of the previous lemma also holds true. That is, if tpxq “
ř

ně anx
n P

krrxss is such that the coefficients an satisfy a linear recursion, then there exists some rational function
gpxq{hpxq which has a power series expansion of tpxq.

Proof. We know that for tpxq, we have

an “ c1an´1 ` c2an´2 ` ¨ ¨ ¨ cman´m

for n that is sufficiently large enough, since we are given that the coefficients of t satisfy a linear recursion.
Therefore, we have

an ´ c1an´1 ´ ¨ ¨ ¨ ´ cman´m “ 0

Let b0 “ 1 and bi “ ´ci when i ě 1. Therefore, we may write

anb0 ` an´1b1 ` ¨ ¨ ¨ an´mbm “ 0

Now, consider hpxq “ b0 ` b1x ` ¨ ¨ ¨ bmxm. Consider the product tpxqhpxq. The coefficient of xn in this
product will be

b0an ` b1an´1 ` ¨ ¨ ¨ bman´m

which is 0 by our assumption. Therefore, all terms of tpxqhpxq have a coefficient of 0 for n sufficiently
large. Suppose for all n ą k we have that the coefficient of xk is 0 (and not 0 for n not more than k).
Therefore, tpxqhpxq “ gpxq is a polynomial of degree k. Therefore, gpxq{hpxq is a rational function that
is represented by tpxq. Therefore, we have found some rational function that is represented by tpxq given
that the coefficients of tpxq satisfy a linear recursion. This completes our proof.

2 The p-adic numbers

The p-adic numbers are defined as follows:

Definition 3. The set of p-adic numbers Zp is defined as:

Zp “ tpa1, a2, . . . q | ai P Z{piZ and ai`1 ” ai pmod piqu

One can prove that the set of p-adic numbers, Zp forms a ring under term-wise addition and multi-
plication.

Proposition 7. The ring Zp is an integral domain, i.e., if for some a, b P Zp we have ab “ 0, then
either a “ 0 or b “ 0.

Proof. In Zp, we have 0 “ p0, 0, . . . q. Thus, we need to prove that either a “ p0, 0, . . . q or b “ p0, 0, . . . q

given that ab “ p0, 0, . . . q. First, let a “ pa1, a2, . . . q and b “ pb1, b2, . . . q. Then,

ab “ pa1b1, a2b2, . . . q “ p0, 0, . . . q

This implies that we must have aibi ” 0 pmod piq for all i. Clearly, we must also have a1b1 ” 0
pmod pq. Since Zp is an integral domain, we must have a1 ” 0 pmod pq or b1 ” 0 pmod pq. Assume
without loss of generality that a1 ” 0 pmod pq. We will prove that either ai “ 0 for all i or bi “ 0 for all i.

We will prove this by contradiction. Suppose that ai ‰ 0 and bi ‰ 0. Then, there exists some ak
such that ak ” 0 pmod pkq. Also assume without loss of generality that bi ‰ 0 for some i ď k (if the
smallest such i is greater than k, then we just exchange a and b). If ak ” 0 pmod pkq, then by the
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definition of a p-adic number, we must have ak`1 ” ak ı 0 pmod pkq. Thus, ak`1 ‰ 0. It follows that
for any i ě k, we must have ai ‰ 0 as well as bi ‰ 0.

Now, since ab “ 0, we must have aibi ” 0 pmod piq for all i ě k. Now, we have ak´1 ” 0 pmod pk´1q

but ak ” 0 pmod pkq. Moreover, by definition, we have ak ” ak´1 pmod pk´1q. Therefore, it follows
that

ak ” pk´1m1 pmod pkq

where 0 ă m1 ă p. Next, we have

ak`1 ” pkm0 ` pk´1m1 pmod pk`1q

where 0 ă m0 ă p. In general, we therefore have

ak`i ” pk`i´1mi´1 ` ¨ ¨ ¨ ` pkm0 pmod pk`iq

Let us say the smallest value of i for which bi ‰ 0 is i “ r. We assumed earlier (WLOG) that r ă k.
Now, just as before, we may write:

br`j ” pr`j´1nj´1 ` ¨ ¨ ¨ ` prn0 pmod pr`jq

Since k ą r, let k “ r ` l where l is some natural number. Also, let i “ r ´ k ` j. Therefore,

br`j “ bk`i ” pk`i´1nj´1 ` ¨ ¨ ¨ ` prn0 pmod pk`iq

Now, vppak`ibk`iq “ vppak`iq ` vppbk`iq. Since the smallest power of p in the expansion of ak`i is k.
Therefore, we have vppak`iq “ k. Since the smallest power of p in the expansion of bk`i is r, we have
that vppbk`iq “ r ă k. Thus, vppak`ibk`iq “ kr ď k2. Now, consider the case when i “ k2 ´ k ` 1. We
therefore have vppak`1bk2`1q ď k2. This implies that

ak2`1bk2`1 ı 0 pmod pk
2

`1q

However, since ab “ 0, we must have ak2`1bk2`1 ” 0 pmod pk
2

`1q. A contradiction. Thus, we cannot
have both a ‰ 0 as well as b ‰ 0.

Let us explore what the units in Zp are. We first take an example. Consider Z3. Consider a “

p1, 4, 13, 40, . . . q P Zp. Also, let b “ p1, 7, 25, 79, . . . q. Clearly, b also is an element of Zp. Moreover,

ab “ p1 ¨ 1, 4 ¨ 7, 13 ¨ 25, 40 ¨ 79, . . . q “ p1, 1, 1, 1, . . . q

Thus, b is the inverse of a in Zp. Since a has an inverse in Zp, it follows that a is a unit in Zp. Note that
however, a “ p0, 3, 12, . . . q is not a unit in Zp. It seems that in general, a P Zp is a unit if and only if the
first term of a is non-zero. In other words, we claim that a P Zp is a unit if and only if a ” 0 pmod pq.

Proposition 8. In Zp, a p-adic number u is a unit if and only if u1 ı 0 pmod pq

Proof. Let u “ pu1, u2, . . . q. Suppose u1 “ 0. Then, there is clearly no inverse for u since there is no
b1 P Z{pZ such that u1b1 ” 1 pmod pq (0 is not a unit modulo p). Hence, if u is a unit, then it follows
that u1 ı 0 or equivalently, u ” 0 pmod pq.

We now prove the other direction. Suppose u ı 0 pmod pq. Then, we must prove that u is a unit
in Zp. Since p is prime, if u ‰ 0 pmod pq, it means that u1 ı 0 pmod pq. Since p is a prime, it follows
that pu1, pq “ 1. Thus, u1 is a unit in Z{pZ.

Now, suppose that puk, pq “ 1. Now, by definition of a p-adic number, we have uk`1 ” uk pmod pkq.
This in turn implies that uk`1 ” uk pmod pq. Thus, puk`1, pq “ 1. Hence, puk`1, p

k`1q “ 1. Thus, uk`1

is a unit in Z{pk`1Z.

By induction, this implies that for all k, we have uk is a unit in Z{pkZ. Since the multiplication
operation is termwise in Zp, it follows that u is a unit in Zp.

This leads to another important result:
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Proposition 9. Let a ‰ 0 be a p-adic number. Then, there exists a unique pair pu, kq such that a “ pku
and u is a unit.

Proof. We will first prove existence. Let a “ pa1, a2, . . . q. If a1 ‰ 0, then by the previous proposition,
we have that a itself is a unit. Thus, a “ p0u where u “ a.

Now, suppose that ak “ 0 for some k (this automatically implies that a1, a2, . . . , ak “ 0 by the construc-
tion of p-adic numbers) such that ak`1 ‰ 0. Now, consider the p-adic number

b “ pak`1{pk, ak`2{pk, . . . q

We must first prove that b is indeed a p-adic integer.

For any i ą k, by the definition of p-adics, we know that ai ” ak ” 0 pmod pkq. Thus, ai{p
k is an

integer for all ai.

Now, for some i, we have ak`i`1 ” ak`i pmod pk`iq by the definition of p-adics. Thus, ak`i`1 “

pin ` ak`i where 0 ă n ă p. Dividing both sides by pk, we get

ak`i`1

pk
“ pin `

ak`i

pk

Hence, taking mod pi on both sides, we get

ak`i`1

pk
”

ak`i

pk
pmod piq

Hence, we conclude that b P Zp. Now, consider the p-adic integer pkb. We get

pkb “ pkpak`1{pk, ak`2{pk, . . . , ak`k{pk, ak`k`1{pk, . . . q

“ pak`1, ak`2, . . . , ak`k, ak`k`1, . . . q

Now, ai`1 ” ak pmod piq, or in general, ak`i ” ai pmod piq by induction on k. Thus,

pkb “ pa1, a2, . . . q “ a

Now, clearly, ak`1{pk ı 0 pmod pq since ak`1 is nonzero. Thus, b is a unit. Thus, for arbitrary a, we
have found a specific unit b and power k such that a “ pkb, which completes our proof for existence.

Now, we prove uniqueness. To do so, suppose that a “ pk1u1 “ pk2u2. Assume WLOG that k1 ě k2.
Then,

pk1u1 ´ pk2u2 “ pk2ppk1´k2u1 ´ u2q “ 0

Since Zp is an integral domain, it follows that either pk2 “ 0 or pk1´k2u1 ´ u2 “ 0. Since pk1 is clearly
not 0, it follows that

pk1´k2u1 “ u2

If k1 ą k2, then the first term of u2 will be 0, which is a contradiction since u2 is a unit. Therefore,
k1 “ k2. Thus, u2 “ p0u1 “ u1. Hence, the pair pu, kq is unique.

Now, we will explore some properties related to Zprxs, i.e. polynomials with coefficients in Zp.

Theorem 1. Let fpxq P Zprxs. Consider some a1 (if there exists one) such that fpa1q ” 0 pmod pq such
that f 1pa1q ı 0 pmod pq. Then, there exists a unique a P Zp such that fpaq “ 0 and a ” a1 pmod pq.

Proof. If we prove that if there exists a root, ak to fpxq in Z{pkZ with f 1pakq ‰ 0, then there exists a
unique ak`1 such that fpak`1q “ 0 in Z{pk`1Z, it will by induction imply that there exists some unique
p-adic number a “ pa1, a2, . . . q such that fpaq “ 0 in Zp. However, note the condition that ak`1 ” ak
pmod pkq. Let us first prove this result for k “ 1.

Suppose fpa1q ” 0 pmod pq and f 1pa1q ı 0 pmod pq. We will try to find some a2 such that fpa2q ” 0
pmod p2q and a2 ” a1 pmod pq.

fpxq “ c0 ` c1x ` ¨ ¨ ¨ ` cnx
n
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in Z{pZ. Then, we have fpa1q “ c0 ` c1a1 ` ¨ ¨ ¨ ` cna
n
1 . Consider a2 “ a1 ` mp for some integer

0 ă m ă p. Then, we have

fpa2q “ fpa1 ` mpq “ c0 ` c1pa1 ` mpq ` ¨ ¨ ¨ ` cnpa1 ` mpqn

“ c0 ` c1pa1 ` mpq ` ¨ ¨ ¨ ` cnpan1 ` nan´1
1 mp ` ¨ ¨ ¨ ` pmpqnq

Now, if we take mod p2 on both sides of the above, all terms with powers of p over 2 get cancelled to 0.
Thus, we get:

fpa2q ” c0 ` c1pa1 ` mpq ` c2pa21 ` 2a1mpq ` ¨ ¨ ¨ ` cnpan1 ` nan´1
1 mpq

” pc0 ` c1a1 ` ¨ ¨ ¨ cnanq ` pc1pmpq ` 2c2pmpqa1 ` ¨ ¨ ¨ncnpmpqan´1
1 q

” fpa1q ` mpf 1pa1q pmod p2q

Now, we know that a2 ” a2 pmod pq since a2 “ mp ` a1. If a2 is a root modulo p2, it implies
that fpa2q ” 0 pmod p2q. Therefore, fpa1q ` mpf 1pa1q ” 0 pmod p2q. Since fpa1q ” 0 pmod pq, let
fpa1q “ kp. So, we must have kp ` mpf 1pa1q ” 0 pmod pq. So, m ” ´kpf 1pa1qq´1 pmod pq. We can
do this step since f 1pa1q ı 0 pmod pq. Thus, we have found a unique m such that fpa1 ` mpq ” 0
pmod p2q. In other words, given a value a1, we have proved that there exists a unique a2 such that
fpa2q ” 0 pmod p2q.

Now, suppose we are given some ak such that fpakq ” 0 pmod pkq. We will prove that there exists
a unique ak`1 such that fpak`1q ” 0 pmod pk`1q and ak`1 ” ak pmod pkq.

Let fpxq “ c0 ` ¨ ¨ ¨ ` cnx
n. Then,

fpakq ” c0 ` c1ak ` ¨ ¨ ¨ cna
n
n ” 0 pmod pkq

Now, since ak`1 ” ak pmod pkq, we have ak`1 ” pkm ` ak where 0 ă m ă p. Therefore,

fpak`1q “ c0 ` c1ak`1 ` ¨ ¨ ¨ ` cna
n
k`1

“ c0 ` c1pak ` pkmq ` ¨ ¨ ¨ ` cnpak ` pkmqn

“ c0 ` c1pak ` pkmq ` ¨ ¨ ¨ ` cnpank ` nan´1
k mp ` ¨ ¨ ¨ pmpqnq

If we take mod pk`1 on both sides, all terms apart from the pk and constant terms cancel out since
2k ąě k ` 1 for all positive k. Thus,

fpak`1q ” c0 ` c1pak ` pkmq ` c2pa2k ` 2akp
kmq ` ¨ ¨ ¨ ` cnpank ` nan´1

k pkmq

” pc0 ` c1ak ` ¨ ¨ ¨ cna
n
k q ` pkmpc1 ` 2c2ak ` ¨ ¨ ¨ncna

n´1
k q

” fpakq ` pkmf 1pakq ” 0 pmod pk`1q

Since fpakq ” 0 pmod pkq, we have fpakq “ pkt. So, pkt ` pkmf 1pakq ” 0 pmod pk`1q. Hence,

´t ` mf 1pakq ” 0 pmod pq

Hence, m ” tpf 1pakqq´1 pmod pq. Since f 1pakq ı 0 pmod pkq, its inverse exists and is unique. Thus,
there exists a unique m, given as above, such that ak`1 “ mpk ` ak is a root of fpxq in Z{pk`1Z and
ak`1 ” ak pmod pkq.

We are given the value a1 that is a root of fpxq in Z{pZ. Thus, we can find the corresponding value of a2
and hence a3 and so on. Thus, by induction, there exists a unique sequence a “ pa1, a2, . . . q that satisfies
fpakq ” 0 pmod pkq and ak`1 ” ak pmod pkq. By definition of a p-adic number, a P Zp. Moreover, since
fpakq ” 0 pmod pkq it follows that fpaq “ 0 in Zp. Thus, there exists a unique p-adic number a P Zp

such that fpaq “ 0 given a1.

3 The p-adic Numbers Qp

3.1 As an Extension of Zp

Definition 4. We define Qp “ Zpr 1p s.

8



For example,
p1, 4, 13, . . . q

1
`

p3, 3, 3, . . . q

3
`

p2, 5, 14, . . . q

9
P Q3

Note that the above is NOT equal to

p1, 4, 13, . . . q ` p1, 1, 1, . . . q `

ˆ

2

9
,
5

9
,
13

9
, . . .

˙

The divided by sybmol is merely used as a notation and does not translate to the above. More generally,
any element of Qp is:

a0 `
a1
p

` ¨ ¨ ¨ `
ak
pk

By taking pk as the common denominator, the above can be rewritten as:

a0p
k ` a1p

k´1 ` ¨ ¨ ¨ ` ak
pk

“
a

pk

where ai, a P Zp. Moreover, we have that two p-adic numbers a
pk and b

pm are equal if and only if

apm “ bpk.

Proposition 10. Qp is a field. Moreover, Q P Qp.

Proof. Consider some p-adic number α “ a
pk . We will prove that there exists some p-adic number β “ b

pm

such that αβ “ 1 for every α P Qp that is non-zero, i.e. a ‰ 0.

Firstly, we know that since a P Zp, we have that there exists some a1 that is a unit in Zp and n1 a
non-negative integer so that a “ a1pn1 . Let β P Qp be such that

β “
b

1
“

pa1q´1pk´n1

1

The inverse of a1 exists since a1 is a unit as defined. Then,

αβ “
a1pn1

pk
¨

pa1q´1pk´n1

1
“

pk

pk

Now since a{pk “ b{pm ðñ apm “ bpk, it follows that the above equals 1 if and only if pk “ pk. Thus,
αβ “ 1. Thus, we have found a β P Qp given α P Qpzt0u such that αβ “ 1. Hence, Qp is a field.

We will now prove that Q P Qp. Consider an element of Q, say a{b. Let a “ pk1a1 and b “ pk2b1

where a1 and b1 are co-prime with p. Thus,

a

b
“ pk1

a1

b1

pk2

where α P Zp. Thus, any rational number is also a p-adic number. Hence Qp contains Q.

3.2 Qp as Completion of Q
We will first define metric spaces.

Definition 5. We call a set X along with a function (metric) d : X ˆ X Ñ R, pX, dq, a metric space if
the following properties are satisfied for any x, y, z P X:

1. dpx, xq “ 0

2. If x ‰ y then dpx, yq ą 0

3. dpx, zq ď dpx, yq ` dpy, zq

4. dpx, yq “ dpy, xq

For example, pQ, | ¨ |q is a metric space.

9



Definition 6. For a metric space pX, dq, we define a Cauchy sequence of X wrt d as follows: A sequence
pxnqně0 where xn P X is called a Cauchy sequence if for all ϵ P R`, there exists some Nϵ P N such that
for all integers m,n ě N , we have dpxn, xmq ă ϵ.

In simple terms, any sequence that should converge under the given metric is called a Cauchy sequence.
We now define what a completion with respect to a metric is.

Definition 7. Let SpX,dq be the set of Cauchy sequences in X with respect to the metric d. Then, given
two elements xn, yn of SpX,dq, we say that xn is equivalent to yn iff for every real number ϵ, there exists
a natural number Nϵ such that for all integers n ě N , we have dpxn, ynq ă ϵ. We denote this equivalence
by xn „ yn.

Definition 8. We define the completion of X with respect to d as the set SpX,dq{ „.

In more intuitive terms, the completion of a metric space X with respect to d is the set of limits of
the Cauchy sequences in X with respect to d.

As an example, R is a completion of Q with respect to the usual metric, the absolute value.

Now, we will define Qp as a completion of Q. In order to do so, we must first define the metric on
Q that yields Qp.

Definition 9. Let p be a prime and a be an integer. Then, we define vppaq to be the largest n such that
pn|a when a ‰ 0 and to be 8 when a “ 0. Now, we extend this definition to Q. Let q “ a{b P Q where
a and b are integers where b ‰ 0. Then, we define vppqq “ vppaq ´ vppbq.

Lemma 1. The above definition of vppq is well-defined. That is, if a{b “ c{d “ q, then we have
vppa{bq “ vppc{dq.

Proof. Suppose a{b “ c{d such that vppa{bq “ vppc{dq ` m. Then, vppaq ´ vppbq “ vppcq ´ vppdq ` m.
Let a “ pk1a1, b “ pk2b1, c “ pk3c1, d “ pk4d1 with each of a1, b1, c1, d1 relatively prime to p. Therefore,
k1 ´ k2k3 ´ k4 ` m. Moreover, we have a{b “ pk1´k2a1{b1 and c{d “ pk3´k4c1{d1. Since a{b “ c{d, we
have

pk1´k2
a1

b1
“ pk3´k4

c1

d1

We can rewrite this as
pk1´k2a1d1 “ pk3´k4b1c1

Now, we assumed that k1 ´ k2 “ k3 ´ k4 ` m. Let k3 ´ k4 “ n. So,

pn`ma1d1 “ pnb1c1

which implies that pma1d1 “ b1c1. Taking the vp of both sides, we have m “ 0. Thus

Definition 10. We define the p-adic absolute value to be as follows. Let q P Q. Then, we define
|q|p “ p´vppqq when q ‰ 0 and 0 when q “ 0.

We will first explore some properties of vppaq which will help us find a metric on Q that gives Qp.

Proposition 11. For any a, b P Z, the following are true:

1. vppabq “ vppaq ` vppbq

2. vppa ` bq ě minpvppaq, vppbqq

3. If vppaq ‰ vppbq, then vppa ` bq “ minpvppaq, vppbqq

Proof. Let vppaq “ k1 and vppbq “ k2. WLOG, assume that k1 ě k2. Then, clearly a “ pk1a1 and
b “ pk2b1 where pa1, pq “ 1 and pb1, pq “ 1. Then:

1. We have ab “ a1b1pk1`k2 where pa1b1, pq “ 1 since each of a1 and b1 is co-prime to p. Hence,
vppabq “ k1 ` k2 “ vppaq ` vppbq.
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2. We have a ` b “ a1pk1 ` b1pk2 . Since k1 ě k2, we can write

a ` b “ pk2pa1pk1´k2 ` b1q

Hence,
vppa ` bq “ k2 ` vppa1pk1´k2 ` b1q

Clearly, the above is at least k2 since vppa1pk1´k2 `b1q ě 0. Hence, vppa`bq ě k2 “ minpvppaq, vppbqq

since we assumed that vppaq ď vppbq.

3. Since we have that vppaq ‰ vppbq, we know k1 ą k2. Thus, a1pk1´k2 ` b1 ” 0 ` b1 ” b1 pmod pq.
Since b1 is co-prime with p, we have a1pk1´k2 ` b1 ı 0 pmod pq. Hence, p ∤ ppk1´k2a1 ` b1q. Thus,
vppa1pk1´k2 ` b1q “ 0. Hence, vppa ` bq “ k2 “ vppbq “ minpvppaq, vppbqq since we assume that
vppaq ď vppbq.

Proposition 12. The above properties all hold for any r, s P Q.

Proof. Let r “ a1{b1 and s “ a2{b2 where ai, bi are integers with bi ‰ 0. We know by definition that
vpprq “ vppa1q ´ vppb1q and similarly vppsq “ vppa2q ´ vppb2q. Hence:

1. We have

vpprsq “ vp

ˆ

a1a2
b1b2

˙

“ vppa1a2q ´ vppb1b2q

Since ai P Z we have vppa1a2q “ vppa1q ` vppa2q and similarly vppb1b2q “ vppb1q ` vppb2q. Thus,

vpprsq “ pvppa1q ´ vppb1qq ` pvppa2q ´ vppb2qq “ vpprq ` vppsq

2. We can write vppr ` sq as

vp

ˆ

a1
b1

`
a2
b2

˙

“ vp

ˆ

a1b2 ` a2b1
b1b2

˙

“ vppa1b2 ` a2b1q ´ vppb1b2q

Now, a1b2 and a2b1 are integers. So,

vp pa1b2 ` a2b1q ď minpvppa1b2q, vppa2b1qq

Thus,

vppr ` sq ě minpvppa1q ` vppb2q, vppa2q ` vppb1qq ´ pvppb1q ` vppb2qq

“ minpvppa1q ´ vppb1q, vppa2q ´ vppb2qq “ minpvpprq, vppsqq

We can legally perform the above step since vppb1b2q is a constant.

3. If vppa1b2q “ vppa2b1q, then we have vppa1q ` vppb2q “ vppa2qvppb1q. Thus, by rearranging the
terms, we have vpprq “ vppsq. Thus, if vpprq ‰ vppsq, it follows that vppa1b2q ‰ vppa2b1q. Hence,
vppa1b2 ` a2b1q “ minpvppa1b2q, vppa2b1qq. It follows directly that vppr ` sq “ minpvpprq, vppsqq.

We have thus extend all the properties that hold for integers under vp to rationals.

We will now use these properties to prove some properties regarding |¨|p, which will in turn prove
that pQ, |¨|pq is a metric space.

Proposition 13. The following properties are true regarding |¨|p:

1. |q|p ě 0 and equality holds iff q “ 0

2. |q ` r|p ď maxp|q|p , |r|pq

3. |qr|p “ |q|p |r|p

Proof. 1. We have |q|p “ p´vppqq. Clearly this is at least 0 for all vppqq since vppqq P Q. We have

p´vppqq “ 0 iff vppqq “ 8 which happens only when q “ 0.
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2. We have
|q ` r|p “ p´vppq`rq ď p´ minpvppqq,vpprqq “ pmaxp´vppqqq,´vpprq

since vppq ` rq ě minpvppqq, vpprqqq. Thus,

|q ` r|p ď maxp|q|p , |r|pq

Clearly, equality holds when |q|p ‰ |r|p, which follows from the property of vp.

3. We have
|qr|p “ p´vppqrq “ p´vpq´vpprq “ p´vppqqp´vpprq “ |q|p |r|p

With these properties, we may now define a new metric on Q. Consider the metric dp which is defined
as follows:

Definition 11. We define the function dp : Q ˆ Q Ñ R as follows: dppx, yq “ |x ´ y|p.

Proposition 14. Q is a metric space over dp.

Proof. In order to prove this, we must prove all properties listed in the definition of a metric space.

1. dppx, xq “ |x ´ x|p “ |0|p “ 0

2. dppx, yq “ |x ´ y|p ą 0 when x ‰ y by the previous proposition.

3. dppx, zq “ |x ´ z|p “ |px ´ yq ` py ´ zq|p. By property 2 above, |px ´ yq ` py ´ zq|p ď maxp|x ´ y|p , |y ´ z|pq ď

|x ´ y|p ` |y ´ z|p since |q|p ě 0. Hence, dppx, zq ď dppx, yq ` dppy, zq.

4. dppx, yq “ |x ´ y|p “ |y ´ x|p “ dppy, xq

Thus, Q is a metric space over dp.

We can thus finally define Qp in terms of Q as follows:

Definition 12. We define Qp to be the completion of Q with respect to dp. Thus, Qp “ trans | an P Spu

where Sp denotes the set of Cauchy sequences in Q with respect to dp.

3.3 Operations in Qp

Now, we know that Q is a field with operations p`, ¨q. We will now try to find a pair of binary operations
p`, ¨q on Qp such that pQp,`, ¨q is a field.

Let α P Qp. Therefore, we can write α “ ras for some a P Sp by definition of Qp. Similarly, let
β “ rbs P Qp. We define the addition of two elements in the p-adics as

α ` β “ ras ` rbs “ ra ` bs

and their product as
α ¨ β “ ras ¨ rbs “ ra ¨ bs

However, we have not yet defined what addition and multiplication are in Sp (a and b are elements of
Sp). We define the sum of two sequences a “ paiq and b “ pbiq to be a ` b “ pai ` biq, i.e. the termwise
sum of the terms of the sequence. Similarly, we define their product to be a ¨ b “ paibiq. Since both a
and b converge, it follows that both a` b as well as ab converge. Thus, Sp is closed under multiplication.

Definition 13. Let S be the set of all Cauchy sequences of Q, we define a set of equivalence classes in
S such that

S{„ “ tras|a P Su

ras “ tpaiq „ y|Dpyiq P S lim
iÑ8

|ai ´ yi|p “ 0u

Lemma 2. The set S{„ has a well-defined addition and multiplication

ras ` rbs „ ra ` bs

rasrbs „ rabs
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Proof. We need to show that, |pai ` biq ´ pa
1

i ` b
1

iq|p “ 0. To prove this, we can observe the following,

|pai ` biq ´ pa
1

i ` b
1

iq|p “ |ai ´ a
1

i ` bi ´ b
1

i|p

It follows that,
|ai ´ a

1

i ` bi ´ b
1

i|p ď |ai ´ a
1

i|p ` |bi ´ b
1

i|p

the RHS converges to 0 as i Ñ 8. For multiplication, we have,

|aibi ´ a
1

ib
1

i| “ |aibi ´ aib
1

i ` aib
1

i ` a
1

ib
1

i|

|aipbi ´ b
1

iq ` b
1

ipai ´ a
1

iq|p ď |aipbi ´ b
1

iq|p ` |b
1

ipai ´ a
1

iq|p

|aipbi ´ b
1

iq|p ` |b
1

ipai ´ a
1

iq|p “ |ai|p|pbi ´ b
1

iq|p ` |b
1

i|p|pai ´ a
1

iq|p

Since paiq and pb
1

iq are bounded, then we can proceed:

|ai|p lim
iÑ8

|pbi ´ b
1

iq|p ` |b
1

i|p| lim
iÑ8

pai ´ a
1

iq|p “ ϵ ¨ 0 ` ϵ ¨ 0 “ 0

Now, we will prove that Qp is a field.

Definition 14. If λ is an element of Qp and pxnq P S{„ is any Cauchy sequence representing λ, we
define

|λ|p “ lim
nÑ8

|xn|p

Proposition 15. Qp “ S{„ is a field

Proof. Let p1{xiq denote the multiplicative inverse of pxiq in Qp. To know that 1{xn is Cauchy, observe
the following

ˇ

ˇ

ˇ

ˇ

1

xi
´

1

xj

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

xj ´ xi

xjxi

ˇ

ˇ

ˇ

ˇ

p

Since pxnq is Cauchy, we have that pxj ´ xiq is bounded by ϵ. It follows that for a fix large N and for
every i, j ą N , we have that for every ϵ ą 0, the following holds

ˇ

ˇ

ˇ

ˇ

1

xi
´

1

xj

ˇ

ˇ

ˇ

ˇ

p

ă ϵ

3.4 Sequences and Series in Qp

Till now, we only talked about sequences in Q, and used them to define the system Qp. We will now
talk about sequences in Qp itself. They can be thought of as sequences of sequences, since each element
of Qp is itself a sequence of elements in Q. We will now extend the p-adic absolute value to even p-adic
numbers. There are two things we need to take care of here. Firstly, we only know what |q|p where
q is a rational number is, not a sequence of rational numbers. So, we need to define the notion of
p-adic absolute value for Cauchy sequences. Next, ras is not a single sequence. It is a set of sequences.
Therefore, we need to show that for any sequence in ras, the result of |ras|p is the same. In other words,
if x „ y are two sequences, then we must show that |x|p “ |y|p.

Definition 15. Let pxnq be a Cauchy sequence. Then, the sequence p|xn|pq converges to some real
number, say y P R. Then, we define |pxnq|p to be y. In other words, |pxnq|p “ limnÑ8 |xn|p.

Proof. We will prove that if pxnq is a Cauchy sequence, then p|xn|pq converges in R. So, we must prove

that for all ϵ P R`, we have that there exists some Nϵ P N such that for all m,n ě Nϵ we have

||xn|p ´ |xm|p| ă ϵ

By the definition of a Cauchy sequence with respect to |¨|p, we have that for every ϵ P R`, there exists
some natural number Nϵ such that for all m,n ě Nϵ, we have |xn ´ xm|p ă ϵ. Let us now keep ϵ and
Nϵ fixed. Now, consider some integers m,n ě Nϵ such that |xn|p ‰ |xm|p. Then, we have

|xn ´ xm|p “ maxp|xn|p , |xm|pq ă ϵ
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Therefore, we have 0 ă |xm|p ă |xn|p ă ϵ (WLOG). Thus, |xn|p ´ |xm|p ă ϵ. In general, ||xn|p ´ |xm|p| ă

ϵ.

Now, if |xn|p “ |xm|p, this implies that ||xn|p ´ |xm|p| “ 0 ă ϵ since ϵ P R`. Thus, for all m,n ě Nϵ we
have ||xm|p ´ |xn|p| ă ϵ. This holds true for every value of ϵ that is a positive real and its corresponding
Nϵ. Therefore, the sequence p|xn|pq converges.

We will now show that |ras|p is well defined where ras is the equivalence class of a Cauchy sequence
a of Q. Recall that this is equivalent to proving that if xn „ yn then |xn|p “ |yn|p.

Proposition 16. If pxnq, pynq P Sp are equivalent (where equivalence is as defined before), then |pxnq|p “

|pynq|p. In other words,
lim
nÑ8

|xn|p “ lim
nÑ8

|yn|p

Proof. Given that pxnq „ pynq, by definition, we have that for all ϵ P R`, there exists some Nϵ P N such
that for all n ě Nϵ, we have |xn ´ yn|p ă ϵ. In other words, if pxnq „ pynq, then

lim
nÑ8

|xn ´ yn|p “ 0

Let us assume for the sake of contradiction that limnÑ8 |xn|p ‰ limnÑ8 |yn|p. Also, let us assume
WLOG that limnÑ8 |xn|p ą limnÑ8 |yn|p. Since |xn ´ yn|p “ maxp|xn|p , |yn|pq when |xn|p ‰ |yn|p, it
follows that

lim
nÑ8

|xn ´ yn|p “ lim
nÑ8

|xn|p “ 0

However, we assumed that limnÑ8 |yn|p ă limnÑ8 |xn|p “ 0. A contradiction since the absolute value
is always positive. It follows that limnÑ8 |xn|p “ limnÑ8 |yn|p. Hence, |pxnq|p “ |pynq|p.

From this, one may conclude that |α|p is well defined for all α P Qp. Moreover, the same properties
hold for |α|p for α P Qp as in Q, which can be easily seen from the fact that |pxnq|p “ limnÑ8 |xn|p.

With the new extension of the p-adic absolute value in the p-adic numbers, we may now extend the
notion of convergence to Qp as well.

Definition 16. Consider a sequence pxnq where xn P Qp. We say that pxnq converges to a limit L P Qp,
iff for all ϵ P R`, there is some natural number Nϵ such that for all n ě Nϵ we have |xn ´ L|p ă ϵ. Note
that here, each xk is itself a p-adic number. So, pxnq is essentially a sequence of sequences of rationals.

We now give the condition of convergence for a sequence in Qp.

Definition 17. A sequence panq converges iff there exists an element of Qp that it converges to.

Proposition 17. In Qp, a sequence pxnq converges then p|xn|pq converges in R. Moreover, limnÑ8 |xn|p “

|limnÑ8 xn|p
Proof. Suppose pxnq converges to L P Qp. Then, by definition, we have that

@ϵ P R`DNϵ P N st @n ě Nϵ, |xn ´ L|p ă ϵ

Now, |xn ´ L|p “ maxp|xn|p , |L|pq ă ϵ if |xn|p ‰ |L|p. Therefore, we have 0 ď |xn|p ă ϵ and 0 ď |L|p ă ϵ
for all real numbers ϵ ą 0. Thus, we have ||xn|p ´ |L|p| ă ϵ. If |xn|p “ |L|p the previous statement still
holds. Therefore,

lim
nÑ8

|xn|p “ |L|p “

∣∣∣ lim
nÑ8

xn

∣∣∣
p

which proves the desired result.

4 Power series in Qp

Definition 18. A series
ř

iě0 ai is said to converge if and only if the sequence pSnq given by Sn “
řn

i“0 ai
converges.

We will now give the condition of convergence for a series in Qp. The condition turns out to be much
simpler than that in R, in which there are multiple convergence tests for series.
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Proposition 18. The series
ř

ně0 an converges in Qp ðñ the sequence panqně0 converges to 0 in Qp.

Proof. Consider the sequence pSnq given by Sn “
řn

i“0 ai. We need to show that pSnq converges if and
only if panq converges.

Suppose pSnq converges. We know that, by definition, pSnq converges if and only if for all ϵ P R`

we have that there exists some natural number Nϵ such that for all m,n ě Nϵ we have |Sm ´ Sn|p ă ϵ.
Consider some n ě Nϵ. Then, we clearly have that

|Sn`1 ´ Sn|p ă ϵ

Now, by definition of Sn, we have Sn`1 ´ Sn “ an`1. Thus, |an`1|p ă ϵ for all n ě Nϵ. Therefore, in

general, we have that for every ϵ P R`, there is some Mϵ “ Nϵ ` 1 such that for all n ě Mϵ we have
|an|p ă ϵ. It follows that panq converges to 0, by definition. Note that this direction of the proof holds
in R as well. The opposite direction is what makes convergence in R more difficult.

Now, we will prove that if panq converges to 0, then pSnq converges. By definition, we have that for
every ϵ P R`, there exists some natural number Nϵ such that for all n ě Nϵ we have |an|p ă ϵ. Now,
consider some integers m,n such that m ą n ě Nϵ. We have

Sm ´ Sn “ an`1 ` ¨ ¨ ¨ ` am

Thus,

|Sm ´ Sn|p “ |an`1 ` ¨ ¨ ¨ ` am|p ď maxpan`1, . . . , amq

Since for all n ě Nϵ, we have that an ă ϵ, it follows that maxpan`1, . . . , amq ă ϵ. Hence |Sm ´ Sn|p ă ϵ
for all m,n ą Nϵ.

Thus, in general, for all ϵ P R`, we have that there exists some Nϵ P N such that for all m,n ě Nϵ,
|Sm ´ Sn|p. Hence, pSnq converges.

Note that the above proof holds entirely because of the fact that |a ` b|p ď maxp|a|p , |b|pq.

4.1 Radius of Convergence

We define the radius of convergence of a power series
ř

ně0 anx
n to be the value r so that the sequence

|an|p cn converges to 0 for all c ă r and does not converge for c ą r. The following result is fundamental:

Proposition 19. The radius of convergence of
ř

ně0 anx
n is given by r “

´

lim sup |an|1{n
p

¯´1

4.2 Discs

Definition 19. For any a P Qp and r P R`, we define a closed disc of radius r, centered at a to be
the set Dpa; rq :“ tz P Qp : |z ´ a|p ď ru and an open disc of radius r, centered at a to be the set

Dpa; r´q :“ tz P Qp : |z ´ a|p ă ru.

Now, consider fpxq “
ř

ně0 anx
n P Qprrxss, a power series, and suppose that its radius of convergence

is r. Therefore, we can define a function f : Dp0; r´q Ñ Qp so that for any t P Dp0; r´q, we have

fptq “ lim
nÑ8

˜

n
ÿ

k“0

akt
k

¸

Since t P Dp0; r´q, the above sum indeed converges, and therefore, f is well defined.

We now defined continuity in Qp.

Definition 20. We say that a function f : S Ñ Qp is continuous at a point x P S if for all ϵ P R`, there
exists some positive real δ such that |x ´ y|p ă δ implies |fpxq ´ fpyq|p ă ϵ.

Definition 21. We say that a function f : S Ñ Qp is continuous, if it is continuous at every point in
S.
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Proposition 20. Every function f : Dp0; r´q Ñ Qp such that

fpxq “ lim
nÑ8

n
ÿ

k“0

akx
k

for all x P Dp0; r´q is continuous in Qp.

Proof. We first prove a lemma:

Lemma 3. Let Sn “
řn

k“0 ak and let S “ limnÑ8 Sn. Then, |S|p ď limnÑ8 maxp|a1|p , . . . , |an|pq.
This can also be written as maxp|a1|p , |a2|p , . . . q. Notationally, we shall express this as maxp|ak|pqně0.

Proof. We know that
S “ lim

nÑ8
Sn

Thus,

|S|p “

∣∣∣ lim
nÑ8

Sn

∣∣∣
p

As we saw earlier, the above is equal to limnÑ8 |Sn|p, which is at most limnÑ8 maxp|a1|p , . . . , |an|pq.

Let x P Dp0; r´q be any point in Dp0; r´q. Let y be another point in Dp0; r´q. Therefore, we have
|x|p ă r and |y|p ă r. Consider some positive real ϵ. Now, suppose that there is some δ P R` such that
|x ´ y|p ă δ. Now, we have

|fpxq ´ fpyq|p “

∣∣∣∣∣ limnÑ8

˜

n
ÿ

k“0

akx
k

¸

´ lim
nÑ8

˜

n
ÿ

k“0

aky
k

¸
∣∣∣∣∣
p

“

∣∣∣∣∣ limnÑ8

˜

n
ÿ

k“0

akpxk ´ ykq

¸
∣∣∣∣∣
p

“

∣∣∣∣∣ limnÑ8

˜

px ´ yq

n
ÿ

k“0

akpxk´1 ` xk´2y ` ¨ ¨ ¨ ` xyk´2 ` yk´1q

¸
∣∣∣∣∣
p

“ |x ´ y|p

∣∣∣∣∣ limnÑ8

˜

n
ÿ

k“0

akpxk´1 ` xk´2y ` ¨ ¨ ¨ ` xyk´2 ` yk´1q

¸
∣∣∣∣∣
p

By the Lemma, we may simplify the above to get:

|fpxq ´ fpyq|p ď |x ´ y|p max
´∣∣anpxn´1 ` xn´2y ` ¨ ¨ ¨ ` xyn´2 ` yn´1q

∣∣
p

¯

ně0

Now, ∣∣xn´1 ` xn´2y ` ¨ ¨ ¨xyn´2 ` yn´1
∣∣
p

ď max
´∣∣xn´kyk´1

∣∣
p

¯n´1

k“1

Since |x|p ă r and |y|p ă r, it follows that
∣∣xn´kyk´1

∣∣
p

ă rn´krk´1 “ rn´1. Therefore,∣∣xn´1 ` xn´2y ` ¨ ¨ ¨xyn´2 ` yn´1
∣∣
p

ă rn´1

Thus,

|fpxq ´ fpyq|p ă |x ´ y|p max
´

|an|p r
n´1

¯

ně0

Now, by the definition of continuity, we must prove that for all ϵ P R`, there exists some δ P R` such
that |x ´ y|p ă δ implies |fpxq ´ fpyq|p ă ϵ. We can let

δ “
ϵ

max
´

|an|p rn´1
¯

ně0

for any given positive real ϵ. Then, clearly |x ´ y|p ă δ implies |fpxq ´ fpyq|p. Therefore, there always
exists such a real number δ and hence fpxq is continuous.

For an alternative proof, we will use the notion of continuity between the mapping of two topological
spaces.
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Definition 22. Let X and Y be topological spaces. The map f : X Ñ Y is continuous ðñ the preimage
of the open set is open.

In other words, if you have a function f mapping from one topological space X to another topological
space Y , and for any open set U Ă Y , the set of all points in X that map to points in U (i.e., the preimage
of U) is open in X, then f is a continuous map.

Proof. To begin, let’s prove first the following lemma:

Lemma 4. Let a, b P Qp and r, s P R`, we have the following properties of Dpa; r´q:

i If b P Dpa; r´q, then Dpa; r´q “ Dpb; r´q.

ii The open disc Dpa; r´q is also a closed set.

iii Dpa; r´q X Dpb; s´q ‰ H ðñ Dpa; r´q Ă Dpb; s´q or Dpa; r´q Ą Dpb; s´q

Proof. i Observe the following, we can rewrite x P Dpa; r´q as,

|x ´ a|p ă r

|x ´ a|p “ p|x ´ b ` b ´ a|pq ď maxp|x ´ b|p, |b ´ a|pq ă r

We have that maxp|x´b|p, |b´a|pq is contained Dpb; r´q, but then |x´a|p ď maxp|x´b|p, |b´a|pq,
thus Dpa; r´q Ă Dpb; r´q, and since it is given that b P Dpa; r´q we also have Dpb; r´q Ą Dpa; r´q.
Hence, Dpa; r´q “ Dpb; r´q as claimed.

ii By definition, Dpa; r´q is an open set. We will show that it is also a closed set. Pick a boundary
point in Dpa; rq, and call it x, and also choose s ď r. Since x is a boundary point, we have
Dpa; rq XDpx; sq ‰ H, then Dy P Dpa; rq XDpx, sq, this means that |y ´a| ă r and |y ´x| ă s ď r.
Using the non-archimedean inequality, we have:

|x ´ a| ă maxp|x ´ y|, |y ´ a|q ă maxps, rq ď r

thus x P Dpa; rq such that Dpa; rq contains each of its boundary points, making Dpa; rq a closed
set by definition.

iii Assume W.L.O.G that r ď s. If the intersection is non-empty then there exists a c in Dpa; rq X

Dpb; sq. Then we know, from piq, that Dpa; rq “ Dpc; rq and Dpb; sq “ Dpc; sq. Hence

Dpa; rq “ Dpc; rq Ă Dpc; sq “ Dpb; sq

Now to begin the proof, we define the preimage of Dpy; s´q under f as,

f´1pDpy; s´qq “ ta P Dp0; r´q|fpaq P Dpy; s´qu

For a sketch-proof, when these set of points in Dp0; r´q that is in the preimage of f are open then f is
continuous. Now, fix an element of the preimage of Dpy; s´q under f , and call it t such that |t|p ă r.
By definition, fptq converges in Dpy; s´q. By Proposition 16, it follows that |ant

n| converges to 0 in
Dpy; s´q. We have that |ant

n|p is a Cauchy sequence. Since an P Qp, it is Cauchy, then we have
|ant

n|p “ |an|p|tn|p ă ϵ ¨ |tn|p. For which it follows that ptnq is Cauchy since we have |amtm|p ă ϵ
for every m ą M (for a fix large M). Then it follows that t converges in Dpy; s´q. Next, we have
that t P Dpy; s´q, and also t P Dp0; r´q then Dpy; s´q X Dp0; r´q “ ttu. By Lemma 4, we know that
Dp0; r´q “ Dpt; r´q Ă Dpt; s´q “ Dpy; s´q. Then we have a union of open disks which are the preimage
of Dpy; s´q under f ,

f´1pDpy; s´qq “
ď

|t|păr

Dpt; r´q

Hence it follows that f is continuous as claimed.

Remarks 1. The characterization all power series fpxq P Qprrxss such that fpxq converges at every
point of the closed unit disk Dp0; 1q are as follows:

• The function f : Dp0; r´q Ñ Dp0; 1´q must be continuous.

• Given t P Dp0; r´q, the sequence of coefficient of f , given by panq satisfy that |ant
n|p converges to

0 in Dp0; 1q.

• For a power series to converge to 1, it needs fp0q “ 1. Since there exists g P Qprrxss such that
f ¨ g “ 1 for which multiplication is closed in Qprrxss. In other words, fpxq P 1 ` xQprrxss.
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5 Exponentiation in p-adics

We define the exponentiation of x in the p-adics to be the following element of Qprrxss:

exppxq “
ÿ

ně0

xn

n!

We see that the exp function has the following properties:

Proposition 21. We have exppx ` yq “ exppxq ¨ exppyq in Qprrx, yss.

Proof. We have

exppxq “ 1 ` x `
x2

2!
`

x3

3!
` ¨ ¨ ¨

and

exppyq “ 1 ` x `
y2

2!
`

y3

3!
` ¨ ¨ ¨

Thus,

exppxq ¨ exppyq “

ˆ

1 ` x `
x2

2!
` ¨ ¨ ¨

˙ ˆ

1 ` y `
y2

2!
` ¨ ¨ ¨

˙

Expanding the above product and combining all terms with the same degree, we get:

exppxq ¨ exppyq “ 1 ` px ` yq `

ˆ

x2

2!
` xy `

y2

2!

˙

` ¨ ¨ ¨ `

n
ÿ

k“0

ˆ

xkyn´k

k!pn ´ kq!

˙

` ¨ ¨ ¨

Writing the above as a summation with respect to n, we get:

exppxq ¨ exppyq “
ÿ

ně0

˜

n
ÿ

k“0

xkyn´k

k!pn ´ kq!

¸

“
ÿ

ně0

˜

řn
k“0

`

n
k

˘

xkyn´k

n!

¸

“
ÿ

ně0

px ` yqn

n!
“ exppx ` yq

by the binomial theorem, and we are done. Hence, we have a homomorphism ϕ : Q2
p Ñ Qp such that

exppxq satisfies ϕpx ˝ yq “ ϕpxq ˝ ϕpyq

Proposition 22. The radius of convergence of exppxq is p´ 1
p´1

Proof. We know that the radius, r, of convergence of any power series in the p-adics is given by

r “ plim sup |an|1{n
p q´1. Therefore, we know that the radius of convergence, r of exppxq is given by

plim sup
∣∣ 1
n!

∣∣
p
q´1. We need to therefore prove that

˜

lim sup

∣∣∣∣ 1n!
∣∣∣∣
p

¸´1

“ p´1{pp´1q

In order to do so, we need the following lemma

Lemma 5. vppn!q “
n´Sppnq

p´1 (Sppnq is the sum of all digits of n over base p)

Proof. Notice that vppn!q “ vppnq ` vppn ´ 1q ` ¨ ¨ ¨ “
ř

lďn vpplq. We take vpplq (l ď n), and expand l
over base p. Take l “ lmpm ` ¨ ¨ ¨ ` lrp

r (m ď r, lm ‰ 0), where we have vpplq “ m. Using telescoping
techniques, observe that:

´1 “ pp ´ 1q ` pp ´ 1qp ` pp ´ 1qp2 ` ¨ ¨ ¨ ` pp ´ 1qpm ´ pm

l ´ 1 “ pp ´ 1q ` pp ´ 1qp ` pp ´ 1qp2 ` ¨ ¨ ¨ ` pp ´ 1qpm´1 ` plm ´ 1qpm ` ¨ ¨ ¨ ` lrp
r

We have that the sum of the digits (over base p) of l ´ 1 is,

Sppl ´ 1q “ mpp ´ 1q ` Spplq ´ 1

The reason why there is ´1 on the RHS since we have lm ´ 1 from the previous equation, thus it follows
we have Spplq ´ 1. We know that vpplq “ m, then solving for m, we have

m “
1

p ´ 1
rSppl ´ 1q ´ Spplq ` 1s
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Then we have,

vppn!q “
ÿ

lďn

vpplq “
1

p ´ 1

ÿ

lďn

rSppl ´ 1q ´ Spplq ` 1s

Since this is a telescoping series, we have that:

vppn!q “
1

p ´ 1
p´Sppnq ` nq “

n ´ Sppnq

p ´ 1

Lemma 6. lim supppvppn!q{nq converges to 1{pp ´ 1q.

Proof. Consider some non-negative integer k. Consider the sequence of all reals vppn!q{n where n is so
that pk ď n ă pk`1. The maximum value of this sequence occurs when n “ pk. Thus, the supremum of
the sequence vppn!q{n when pk ď n ă pk`1 is vppppkq!q{pk. By Legendre’s formula

vppn!q “

Z

n

p

^

`

Z

n

p2

^

` ¨ ¨ ¨

When n “ pk, this simplifies to:

vppn!q “ pk´1 ` ¨ ¨ ¨ ` 1 “
pk ´ 1

p ´ 1

Thus,
vppn!q

n
“

pk ´ 1

pkpp ´ 1q
“

1

p ´ 1
¨
pk ´ 1

pk

The above gives the maximum value of vppn!q for n between pk and pk`1. Thus, one may conclude that

lim suppvppn!q{nq “ lim
kÑ8

ˆ

1

p ´ 1
¨
pk ´ 1

pk

˙

The 1{pp ´ 1q term is constant. Moreover, the sequence px
´1

pp´1qpx where x is a real number converges to

the same real number as ppk ´ 1q{ppkpp ´ 1qq where k is an integer since Z P R. Therefore

lim
kÑ8

1

p ´ 1
¨
pk ´ 1

pk
“ lim

xÑ8

1

p ´ 1
¨
px ´ 1

px
“

1

p ´ 1

Hence lim suppvppn!q{nq “ 1{pp ´ 1q.

Now, our goal is to find lim sup of the sequence |1{n!|1{n
p . The sequence p|1{n!|1{n

p q can be rewritten
as

´

p´vpp1{n!q{n
¯

“

´

pvppn!q{n
¯

Now,

lim sup
´

pvppn!q{n
¯

“ plim suppvppn!q{nq

since pk is a strictly increasing function with respect to k. By our lemma, we therefore have

lim supp|1{n!|1{n
p q “ p1{pp´1q

Thus, r “ p´1{pp´1q and we are done.

Proposition 23. For all a, b P Dp0;
`

p´1{pp´1q
˘´

q, we have a ` b P Dp0;
`

p´1{pp´1q
˘´

q. Therefore, we
have exppa ` bq “ exppaq ¨ exppbq.
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Proof. By definition, from a, b P D
´

0;
`

p´1{pp´1q
˘´

¯

we have |a|p , |b|p ă p´1{pp´1q. Thus, we have

maxp|a|p , |b|pq ă p´1{pp´1q. Hence, |a ` b|p ď max |a|p , |b|p ă p´1{pp´1q. Thus, we have a ` b P

D
´

0;
`

p´1{pp´1q
˘´

¯

.

Now, we know

exppaq “ lim
nÑ8

˜

n
ÿ

k“0

ak

k!

¸

and

exppbq “ lim
nÑ8

˜

n
ÿ

k“0

bk

k!

¸

Thus,

exppaq ¨ exppbq “

˜

lim
nÑ8

˜

n
ÿ

k“0

ak

k!

¸¸

¨

˜

lim
nÑ8

˜

n
ÿ

k“0

bk

k!

¸¸

“ lim
nÑ8

˜

n
ÿ

k“0

ak

k!
¨

n
ÿ

k“0

bk

k!

¸

We can expand the product of the summations and combine the terms of the same degree to get:

n
ÿ

k“0

ak

k!
¨

n
ÿ

k“0

bk

k!
“

n
ÿ

k“0

pa ` bqk

k!
` fnpa, bq

where fnpx, yq is some polynomial in Qprx, ys such that the smallest degree of the terms is n ` 1.
Therefore,

lim
nÑ8

˜

n
ÿ

k“0

ak

k!
¨

n
ÿ

k“0

bk

k!

¸

“ lim
nÑ“8

˜

n
ÿ

k“0

pa ` bqk

k!

¸

` lim
nÑ8

fnpa, bq “ exppa ` bq ` lim
nÑ8

fnpa, bq

by definition of exppa ` bq. We know that the degree of the term with lowest degree in fpx, yq is n ` 1.
Moreover, we have |x|p , |y|p ă p´1{pp´1q. Assume WLOG that |x|p ď |y|p ă p´1{pp´1q. Hence,∣∣xkyn`1´k

∣∣
p

ă
∣∣yn`1

∣∣
p

ă p´n{pp´1q

for any k. Moreover, for any term in fpx, yq with the power of x and y being s, t respectively, we must
have |xsyt|p ă p´n{pp´1q since s ` t ě n ` 1 for fpx, yq. But, each term of fpx, yq also has coefficients.

We know that the coefficients of fpxq are at least p1{n!q2. Thus, the p-adic absolute value of a term of
fpx, yq is at most

p2vppn!qp´n{pp´1q

Now, we know that vppn!q ď 1{pp ´ 1q as n goes to infinity as we saw earlier. Thus, the maximum value
of the p-adic absolute value of the individual terms of fpx, yq is

p
2´n
p´1

as n approaches 8. As n approaches infinity, the above approaches 0. Thus, limnÑ8 |fnpa, bq|p “ 0.
Hence, fnpa, bq itself approaches 0 in Qp as we have seen earlier. Hence, exppa ` bq “ exppaq exppbq.

Corollary 1. exppnaq “ exppanq for all integers n and a P Dp0;
`

p´1{pp´1q
˘´

q.

Proposition 24. We have |exppxq ´ exppyq|p “ |x ´ y|p.

Proof. We first prove that the statement is true when y “ 0. When y “ 0, we have exppyq “ 0. Therefore,
we need to prove that |exppxq ´ 1|p “ |x|p. We have

exppxq ´ 1 “
ÿ

ně1

xn

n!

As we saw earlier, we have

|exppxq ´ 1|p ď max

˜∣∣∣∣xn

n!

∣∣∣∣
p

¸

ně1
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We claim that the maximum absolute value is |x|p. In order to do so, let us suppose for the sake of
contradiction that there is some term xn{n! with an absolute value that is more than or equal to the

absolute value of x. So, we have |xn{n!|p ě |x|p, which happens if and only if |x|n´1
p |1{n!|p ě 1 or

|x|n´1
p ě |n!|p. By the definition of the p-adic absolute value, this happens if and only if

p´pn´1qvppxq ě p´vppn!q ðñ ´pn ´ 1qvppxq ě ´vppn!q

ðñ pn ´ 1qvppxq ď vppn!q

ðñ vppn!q{pn ´ 1q ě vppxq

Now, |x|p ă p´1{pp´1q. Therefore, vppxq ą 1{pp ´ 1q. Thus, we finally get vppn!q{pn ´ 1q ą 1{pp ´ 1q

which is a contradiction. Therefore, we must have that |x|p is the unique maximum value in the sequence
|xn{n!|p. Since the maximum value is unique, we have∣∣∣∣∣ ÿ

ně1

xn

n!

∣∣∣∣∣
p

“ max

˜∣∣∣∣xn

n!

∣∣∣∣
p

¸

ně1

“ |x|p

This proves that |exppxq ´ 1|p “ |x|p.

Now, consider any y in D
´

0;
`

p´1{pp´1q
˘´

¯

. Therefore, we have

|exppxq ´ exppyq|p “ |pexppxq ´ 1q ´ pexppyq ´ 1q|p ď maxp|exppxq ´ 1|p , |exppyq ´ 1|pq

Since |exppxq ´ 1|p “ |x|p, we have the above may be written as maxp|x|p , |y|pq. If |x|p ‰ |y|p, we have
|exppxq ´ 1|p ‰ |exppyq ´ 1|p. Therefore, we have |exppxq ´ exppyq|p “ maxp|x|p , |y|pq “ |x ´ y|p.

6 Artin-Hasse Exponential Function

Theorem 2. Epxq P Zprrxss

To prove this theorem, we need to prove the following Lemmas first:

Lemma 7. Let fpxq P 1 ` xQprrxss be a power series with p-adic rational coefficients. Then fpxq P

1 ` xZprrxss ðñ
fpxp

q

fpxqp
P 1 ` pxZprrxss

Proof. We will begin with the assumption that fpxq P 1 ` xZprrxss. We can see that the constant term
is given by,

F p0q “ fp0qp ´ fp0pq “

˜

1 `
ÿ

iě1

ai0
i

¸p

´

˜

1 `
ÿ

iě1

ai0
pi

¸

“ 1p ´ 1 “ 0

Thus we have that fp0qp “ fp0pq “ 1, then it follows that fpxqp and fpxpq are both invertible formal

power series. Then there exists tpxq P 1 ` pxZprrxss such that fpxp
q

fpxqp
“ tpxq. The reason why tpxq P

1 ` pxZprrxss is because that the coefficients of tpxq satisfy a linear recursion that is derived from the
product fpxqp ¨ tpxq “ fpxpq. By construction, the coefficients of tpxq are an “

řm
i“1 cian´1 (Dm ě 0,

n ą 0), and pciq are the coefficients of fpxqp. By the multinomial theorem, the coefficients pciq is given by
p!{pr1!r2!r3!p¨ ¨ ¨ qq such that

ř

iě0 ri “ p. From this, we know that the coefficients (except the constant
term) of fpxqp is a multiple of p. Hence it follows that tpxq P 1 ` pxZprrxss exists. Now, supposed
that fpxpq “ fpxqp ¨ gpxq with gpxq P 1 ` pxZprrxss. Let fpxq “

ř

ně0 anx
n, gpxq “

ř

ně0 bnx
n. By

assumption, a0 “ 1, and suppose that we have the required integrality for an with 0 ď n ă N´1. We will
show that the Nth coefficient of fpxqp ¨gpxq is equal to the Nth coefficient of p

ř

nďN anx
nqp`

ř

nďN bnx
n

for which this sum is just a redefinition of fpxpq if we take N Ñ 8. The proof will proceed by induction.
To begin, let’s expand these power series to get a sense of the terms,

fpxqp “

˜

N´1
ÿ

i“0

aix
i ` aNxN `

ÿ

kěN`1

akx
k

¸p

“

p
ÿ

t“0

ˆ

p

t

˙

˜

N´1
ÿ

i“0

aix
i `

ÿ

kěN`1

akx
k

¸p´t

paNxN qt

˜

ÿ

nďN

anx
n

¸p

“

p
ÿ

i“0

ˆ

p

i

˙

˜

ÿ

nďN´1

anx
n

¸p´i

paNxN qi
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We have two cases, p ∤ N and p | N . Suppose p ∤ N , then there is no m P Z such that N “ pm
(that would give us another Nth coefficient which is apN

p

). Thus we have that the Nth coefficient of

p
ř

nďN anx
nqp `

ř

nďN bnx
n is

`

p
1

˘

aNa0 ` bN “ pp1qpaN q ` bN “ paN ` bN , while we have that the Nth

coefficient of fpxqp ¨ gpxq is gp0q
`

p
1

˘

aN ` a0bN . Since we have assumed that a0 “ 1, then by the linear
recursion definition of the coefficient of gpxq, we have that a0b0 “ 1 then b0 “ 1. It follows that the Nth
term of fpxqp ¨gpxq is p1qpaN `p1qbN “ paN `bN . The intuition behind the multiplication of fpxqp ¨gpxq

is just termwise multiplication, thus we can find the pairs such that they’re the Nth term. Since by
definition, gpxq P 1 ` pZprrxss, it follows that bN P pZp. Now, it follows that we can always construct
the Nth coefficient using the linear-recursion definition of the coefficient of gpxq then the construction
is followed by induction. Hence both of them have the same Nth coefficient such that p ∤ N . Also, we
can conclude that aN P Zp, since the Nth coefficient is not divisible by p2 but by p only, thus it follows
that the Nth coefficient is in pZp and aN P Zp. Now for our second case, suppose that p | N , then there
exists m P Z such that N “ pm. We have that the Nth coefficient of p

ř

nďN anx
nqp `

ř

nďN bnx
n is

apN
p

`
`

p
1

˘

aN ` bN “ apN
p

` p1qaN ` bN “ apN
p

` aN ` bN . To find apN
p

in p
ř

nďN anx
nqp, consider the pth

term and set i “ 0, observe the following:

˜

ÿ

nďN´1

anx
n

¸p

“

¨

˝

ÿ

nď N
p ´1

anx
n ` aN

p
x

N
p `

N´1
ÿ

n“ N
p ´1

anx
n

˛

‚

p

¨

˝

ÿ

nď N
p ´1

anx
n ` aN

p
x

N
p `

N´1
ÿ

n“ N
p ´1

anx
n

˛

‚

p

“

¨

˝

¨

˝

ÿ

nď N
p ´1

anx
n `

N´1
ÿ

n“ N
p ´1

anx
n

˛

‚` aN
p
x

N
p

˛

‚

p

Then by the binomial theorem, it follows that we have apN
p

as the additional term for the Nth

coefficient of p
ř

nďN anx
nqp `

ř

nďN bnx
n. While for the Nth coefficient of fpxqp ¨ gpxq, we have apN

p

`

gp0q
`

p
1

˘

aN ` a0bN . To find the value of apN
p

, consider the pth term and set t “ 0, observe the following:

˜

N´1
ÿ

i“0

aix
i `

ÿ

kěN`1

akx
k

¸p

“

¨

˝

pN{pq´1
ÿ

i“0

aix
i ` aN

p
x

N
p `

ÿ

kě N
p `1

akx
k

˛

‚

p

¨

˝

pN{pq´1
ÿ

i“0

aix
i ` aN

p
x

N
p `

ÿ

kě N
p `1

akx
k

˛

‚

p

“

¨

˝

¨

˝

pN{pq´1
ÿ

i“0

aix
i `

ÿ

kě N
p `1

akx
k

˛

‚` aN
p
x

N
p

˛

‚

p

Then by the binomial theorem, it follows that we have apN
p

as the additional term for the Nth coefficient

of fpxqp ¨ gpxq. Now, it follows that we can always construct the Nth coefficient using the linear-
recursion definition of the coefficient of gpxq then the construction is followed by induction. Hence both
of them have the same Nth coefficient such that p | N . Also in our second case, we can conclude that
aN P Zp, since the Nth coefficient is not divisible by pp but by p only, thus it follows that the Nth
coefficient is in pZp and aN P Zp. Since we have successfully concluded that aN P Zp, it follows that
fpxq P 1 ` xZprrxss.

Lemma 8. expp´pxq P 1 ` pZprrxss

Lemma 9. Epxp
q

Epxqp
“ expp´pxq

Now we are ready to prove Theorem 2.

Proof. It follows that Epxq P 1`xZprrxss by Lemma 7 due to Lemma 9, thus it follows that the coefficients
of Epxq is in Zp by Lemma 7.
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