Artin-Hasse Exponential

and an Introduction to p-adics

Achyut Bharadwaj, Swayam Chaulagain, Krittika Garg, Lex Harie Pisco

Counsellor: Sanskar Mentor: Nischay

PROMYS India

Jun 16, 2023

Power Series

2 Introduction to p-adics

 $oldsymbol{3}$ Analysis in \mathbb{Q}_p

Table of Contents

Power Series

2 Introduction to p-adics

 \bigcirc Analysis in \mathbb{Q}_p

Ring of Formal Power Series

We define a formal power series of a ring R to be the set $R[[x]] = \{\sum_{n \geqslant 0} a_n x^n \, | \, a_n \in R \}$. We define an addition and multiplication operation on R[[x]] as follows:

• Let $f(x) = \sum_{n \geqslant 0} a_n x^n$ and $g(x) = \sum_{n \geqslant 0} b_n x^n$. Then, we define

$$f(x) + g(x) = \sum_{n \ge 0} (a_n + b_n)x^n$$

where $a_n + b_n$ is carried out in R.

• Let $f(x) = \sum_{n\geqslant 0} a_n x^n$ and $g(x) = \sum_{n\geqslant 0} b_n x^n$. Then, we define

$$f(x) \cdot g(x) = \sum_{k \geqslant 0} \left(\sum_{i=0}^{k} a_i b_{k-i} \right) x^k$$

where $a_i \cdot b_{k-i}$ is carried out in R.

It turns out that R is a ring under the operations defined above.

Units of R[[x]]

Proposition

An element $f(x) \in R[[x]]$ is a unit in R if and only if f(0) (the first term of the power series) is a unit in R.

Proof.

If f(0) is not a unit, then: Let us assume that there is some g such that fg=1 where $f(x)=\sum_{i=0}^\infty a_ix^i$ and $g(x)=\sum_{i=0}^\infty b_ix^i$. Thus,

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} a_i b_{k-i}\right) x^k = 1$$

Hence, $a_0b_0=1$ and $\sum_{i=0}^k a_ib_{k-i}=0$ for all $k\geqslant 1$. So, $b_0=a_0^{-1}$. But, if a_0 is not a unit, its inverse does not exist. Contradiction. Thus, a_0 must be a unit.

Now, suppose that a_0 is a unit. Then, we have $b_0=1/a_0$. Now, when k=1, we have $a_0b_1+b_0a_1=0$. Thus, $b_1=-\frac{b_0a_1}{a_0}$ which clearly exists. By induction, we can keep going on and find each such b_i and hence the corresponding q(x) required. Thus, an inverse power series exists. \square

Composition of Power Series

Proposition

For $f(x), g(x) \in R[[x]]$, we have $f(g(x)) \in R[[x]]$ if and only if g(0) = 0.

Example

Consider $f(x) = 1 + x + x^2 + \cdots$ in $\mathbb{Z}[[x]]$.

- Consider g(x)=1. Then, clearly $f(g(x))=f(1)=1+1+\cdots$ which does not make sense. Hence, f(g(x)) is not defined in this case.
- Consider $g(x)=x^2$. Then, we have $f(g(x))=1+x^2+x^4+\cdots$ which is clearly an element of R[[x]] too.

Multivariate Power Series

We now extend formal power series to multiplie variables.

- We define R[[x,y]] to be (R[[x]])[[y]]
- More generally, we define $R[[x_1,\ldots,x_n]]$ to be $(R[[x_1,\ldots,x_{n-1}]])[[x_n]]$ inductively.
- By induction, one can see that if R is a ring, then $R[[x_1,\ldots,x_n]]$ is also a ring.

Polynomial Fields and Rational Functions

For some field k, we write k[x] to denote the set of polynomials with coefficients in k.

$$k(x) := \left\{ \frac{g(x)}{h(x)} \mid g, h \in k[x], h(x) \neq 0 \right\}$$

Firstly, we explore the relation between k(x), k[x] and k[[x]].

- $k[x] \subset k(x)$ (set h(x) = 1)
- $k[x] \subset k[[x]]$
- If $h(0) \neq 0$, then g(x)/h(x) can be expressed as a unique power series $t(x) \in k[[x]]$. This is called the power series expansion of g(x)/h(x).

The Coefficients of a Power Series Expansion

Proposition

If t(x) is the power series expansion of a rational function, then the coefficients, a_n of t(x) satisfy a linear recursion. That is, there exists some number $m \geqslant 1$ and and constants $c_1, \ldots, c_m \in k$ such that for all sufficiently large n, we have

$$a_n = \sum_{i=1}^m c_i a_{n-i}$$

Example

$$g(x) = 2x + 1$$
 and $h(x) = x^2 + 1$. Then,

$$\frac{g(x)}{h(x)} = \frac{2x+1}{x^2+1} = 1 + x + 2x - x^3 - 2x^4 + x^5 + 2x^6 - \dots$$

Notice how the terms of the power series are recursive.

Proof

Proof.

Suppose we have t(x)=g(x)/h(x) where t(x) is a power series and g,h are polynomials in k[x]. Therefore, we have g(x)=t(x)h(x). Now, g(x) has finite degree and so does h(x). However, t(x) is a power series and need not have a finite degree. Let the degrees of h(x),g(x) be m,k respectively. Next, we evaluate the expansion of the product t(x)h(x) and combine the terms of like degree. Now, for some n that is greater than both m and k, we must have that the coefficient of x^n is 0. Thus we get

$$a_n b_0 + \cdots a_{n-m} b_m = 0$$

for all n that is greater than both m and k. This gives us a linear recurrence relation for a_n :

$$a_n = -\frac{a_{n-1}b_1 + \dots + a_{n-m}b_m}{b_0}$$

Coefficients

Now, the converse of the previous proposition also holds. That is, if the coefficients of t(x) satisfy a linear recurrence relation, then t(x) is the power series expansion of some rational function. This can be proven by simply reversing the arguments of the converse.

Table of Contents

Power Series

2 Introduction to *p*-adics

 \bigcirc Analysis in \mathbb{Q}_p

A Leftist Introduction

In our usual system we write numbers in the normal decimal system from left to right. Let us explore a new number system. Let us instead write the numbers from right to left. This is called as the leftist number system. Here are some rules to follow:

- Normally, we write a real number such as π as 3.141592... In the leftist number system, rather than writing the three dots to the right, we write the three dots to the left. For example, leftist 1 can be expressed as ...0001.
- The process of leftist addition and multiplication are similar to that in the rightist system.

Example

Add $\dots 9997$ to $\dots 0003$. Multiply $\dots 6667$ with $\dots 003$. Multiply $\dots 00624$ with $\dots 0625$.

Some Leftist Properties

- Negative numbers in the rightist system can be represented as a leftist number without adding a negative sign. For example, rightist -3 is leftist ...9997.
- Rational numbers in the rightist system can be represented as a leftist number without adding a division sign. For example, 1/3 = ...6667.
- Leftist numbers in normal decimal system(base 10) have zero divisors. In other words, we can find two non-zero leftist numbers in base 10 that multiply to give 0. An example is ...90625 and ...90624.
- ullet Normally, the decimal expansion of a real number such as 1234 is

$$1 \times 10^3 + 2 \times 10^2 + 3 \times 10 + 4$$

similarly, we can expand the leftist number $\dots 1234$ as:

$$\cdots + 1 \times 10^3 + 2 \times 10^2 + 3 \times 10 + 4$$

where the expansion continues indefinitely to the left.

Leftists in Other Bases

Now, instead of using base-10, we can use some other base, say p where p is a prime. In base $3, \dots 0112$ is a leftist number which can be represented as

$$\cdots + 2 \times 3^2 + 1 \times 3 + 2$$

Now, consider the set of all leftist numbers in base p. That is, the set of all numbers of the form

$$x_0 + x_1 p + x_2 p^2 + \cdots$$

The p-adic Integers

We can rewrite this series as a sequence of partial sums as follows:

$$x_0 + x_1p + x_2p^2 + \cdots \rightarrow (x_0, x_0 + x_1p, x_0 + x_1p + x_2p^2, \dots)$$

Now, let $a_1 = x_0, a_2 = x_0 + x_1 p, \ldots$ We call this set $\mathbb{Z}_p = (a_1, a_2, \ldots)$, the p-adic integers. Notice that:

- For all i, we have $a_i \in \mathbb{Z}/p^i\mathbb{Z}$ since $x_i \in \mathbb{Z}/p\mathbb{Z}$, where $\mathbb{Z}/p\mathbb{Z}$ is the ring of integers modulo p.
- For every k, we have $a_{k+1} \equiv a_k \pmod{p^k}$ since all terms up to p^k are the same.

We will see later why this sequencial definition of \mathbb{Z}_p is needed to make things simpler, rather than just calling \mathbb{Z}_p as the set of all leftist numbers.

The Ring of \mathbb{Z}_p

Recall that the set of leftist numbers had an addition operation. We define an equivalent addition operation on our alternative definition of \mathbb{Z}_p as done in the previous slide. Take $a=(a_1,a_2,\dots)$ and $b=(b_1,b_2,\dots)$. We define addition and multiplication as follows:

- $a + b = (a_1 + b_1, a_2 + b_2, \dots)$
- $ab = (a_1b_1, a_2b_2, \dots)$

Example

Convince yourself that the operations defined above are equivalent to the operations defined on the set of leftist numbers of base p.

Properties of \mathbb{Z}_p

- \mathbb{Z}_p forms a ring and has no zero divisors. Moreover, $\mathbb{Z} \subset \mathbb{Z}_p$.
- An element a of \mathbb{Z}_p is a unit if and only if $a_1 \not\equiv 0 \pmod{p}$.
- We say $a \equiv b \pmod{p^k}$ if $a_i = b_i$ for all $1 \leqslant i \leqslant k$.
- Every element of \mathbb{Z}_p can be expressed as $a=p^ku$ where k is a nonnegative integer and u is a unit.

Hensel's lifting Lemma

Proposition

Let f(x) be a polynomial with coefficients in \mathbb{Z}_p . Let $a_1 \in \mathbb{Z}/p\mathbb{Z}$ so that $f(a_1) \equiv 0 \pmod{p}$ and $f'(a_1) \not\equiv 0 \pmod{p}$. Then, there exists a unique $a \in \mathbb{Z}_p$ such that $a \equiv a_1 \pmod{p}$ and f(a) = 0.

Example

Let $f(x)=x^3-3$. Then, $f(2)=5\equiv 0\pmod 5$ say =5k and $f'(2)\equiv 3(2)^2\equiv 2\neq 0\pmod 5$. So we can apply hensel lemma that implies the existence of $a_2=5m+2$ such that $f(a_2)\equiv 0\pmod 25$. The proof of hensel's lemma gives us the unique value of $m=-k(f'(a_1))^{-1}$. In this case k would be 1 and $(f'(a_1))^{-1}=3$. So $a_2=12$. Indeed by inspection we can see $f(12)\equiv 0\pmod 25$

Expansion of leftist number in reals

Example

Evaluate the leftist number ...222 of base 3 in the reals.

Sol.

We have ...222 + ...001 = ...000 by performing addition. Thus, .the..222 = -1.

Now, we may also write $...222 = 2 + 2 \times 3 + 2 \times 3^2 + 2 \times 3^3 + \cdots$. If we use the formula for an infinite geometric progression, we get

$$\dots 222 = \frac{2}{1-3} = -1$$

which gives the correct answer. However, the geometric series formula is only valid when |r|<1. Yet, we arrived at the correct answer by substituting r=3.

Leftist Convergence

Notice that series that do not normally converge, such as $2+2\times 3+\cdots$, converge in the leftist numbers. Therefore, it is safe to conclude that the "+" operation that is being performed is not being performed in \mathbb{R} . We must therefore come up with some other system of numbers in which series such as the one above converge.

Constructing the *p*-adic Numbers

In order to deal with the problem explained in the previous slide, we now construct a new number system, called the p-adics, which we will denote by \mathbb{Q}_p . Now, notice that any rational number can be expressed as a leftist number. Therefore, \mathbb{Q} is contained in \mathbb{Q}_p . This gives us an idea: Can we construct \mathbb{Q}_p from \mathbb{Q} ? Can we do it in the same way that we construct \mathbb{R} from \mathbb{Q} ? How do we do so? Following is how \mathbb{R} is constructed from \mathbb{Q} .

- A Cauchy sequence is a sequence of rational numbers (x_n) so that the absolute value of the difference between the terms approaches 0. In other words, as $m,n\to\infty$ we have $|x_n-x_m|\to 0$. In other words, a Cauchy sequence is a sequence of rational numbers which we want to converge in our to be defined system, \mathbb{R} .
- ullet Now take the set of Cauchy sequences, S. For each element of S, find the limit of each sequence.
- The set of these limits is \mathbb{R} .

p-adic Absolute Value

We can similarly construct \mathbb{Q}_p from \mathbb{Q} as well. But there is a major difference. Consider the previous example of the leftist number $2+2\times 3+\cdots$ in base 3. This converges to -1 when evaluated in base 3. However, it is very obvious to see that under the normal absolute value, this sequence, i.e. $(2,2+2\times 3,\dots)$ is not a Cauchy sequence. Thus, in order to define \mathbb{Q}_p in the way we defined \mathbb{R} from \mathbb{Q} , we need to define a new notion of the absolute value.

Definition

We define $v_p(a)$ where a is an integer to be the highest power of p that divides a. We define $v_p(q)$ where q is a rational number of the form a/b to be $v_p(a)-v_p(b)$.

Definition

We define the p-adic absolute value of a rational number q to be $|q|_p = p^{-v_p(q)}$.

What does $|\cdot|_p$ Measure?

Notice that the newly defined p-adic absolute value measures inversely, the size of the power of k in the rational number. That is to say, if the power of p is high, then the number is p-adically small and if the power is small, the number is p-adically small. To make sense of this, we can think of the p-adic absolute value as something that measures up to what degree two rational numbers are equal. If we take the two rationals modulo p^k for each k, the two rational numbers are closer if they start to differ at a higher power k.

The Ultrametric

The p-adic absolute value satisfies the following properties:

- $\bullet \ |q|_p\geqslant 0.$ Equality occurs if and only if q=0
- $\bullet \ |qr|_p = |q|_p \, |r|_p$
- $\bullet |q+r|_p \leqslant |q|_p + |r|_p$

Notice how all these properties are satisfied by the absolute value in the reals too. Functions that satisfy the above are known as metrics (of a given space, which is $\mathbb Q$ in this case). However, there is one major difference between the p-adic metric and the absolute value:

$$|q+r|_p \leqslant \max(|q|_p,|r|_p)$$

A metric satisfying the above is called an ultrametric. This property leads to huge differences between the reals and the p-adics. An example which we will see later is that this leads to a much simpler condition for convergence in \mathbb{Q}_p than in \mathbb{R} , where we have multiple different convergence tests.

The p-adic Numbers

We define the p-adic numbers, similar to the reals as follows:

- A *p*-adic Cauchy sequence is a sequence such that the *p*-adic absolute value of higher terms get closer to each other.
- Now take the set of p-acid Cauchy sequences, S_p . For each element of S_p , find the limit of each sequence.
- The set of these limits is \mathbb{Q}_p .

The p-adic Integers Revisited

We define the p-adic integers \mathbb{Z}_p to be

$$\mathbb{Z}_p := \{ a \in \mathbb{Q}_p \mid |a|_p \leqslant 1 \}$$

Example

Prove that the above definition of \mathbb{Z}_p is equivalent to the previous definition of \mathbb{Z}_p as a sequence (Hint: Use the leftist numbers).

Table of Contents

Power Series

2 Introduction to p-adics

 $oldsymbol{3}$ Analysis in \mathbb{Q}_p

Sequences in \mathbb{Q}_p

- We can extend the p-adic absolute value to elements of \mathbb{Q}_p itself. Let (a_i) be a sequence so that $a=\lim_{n\to\infty}a_n\in\mathbb{Q}_p$. Then, we define the p-adic absolute value of a to be the limit of the p-adic absolute value of a_n as n goes to infinity. This turns out to be well defined.
- From this, we can show that a sequence (a_n) where $a_n \in \mathbb{Q}_p$ converges in \mathbb{Q}_p if and only if the sequence $(|a_n|_p)$ converges in \mathbb{R} . Moreover, the absolute value of the limit of (a_n) equals the limit of the absolute value of a_n . That is, $|\lim_{n \to \infty} a_n|_p = \lim_{n \to \infty} |a_n|_p$.
- Another property is that the series $\sum_{n\geqslant 0} a_n$ converges if and only if the sequence (a_n) converges to 0.

Power Series in \mathbb{Q}_p

Recall that we can have a power series over any ring R. Since \mathbb{Q}_p is a ring, we can have one over \mathbb{Q}_p too. Call it $\mathbb{Q}_p[[x]]$.

- We say that the power series $f(x) = \sum_{n \geqslant 0} a_n x^n$ converges at $t \in \mathbb{Q}_p$ if the series $\sum_{n \geqslant 0} a_n t^n$ converges in \mathbb{Q}_p .
- The series converges if and only if $|a_nt^n|_p$ converges to 0 in \mathbb{R} .
- We define the radius of convergence of a power series in \mathbb{Q}_p to be the positive real r so that for all c < r we have $|a_n|_p c^n$ converges to 0 and for all c > r the same sequence diverges. This can be thought of as the largest p-adic absolute value for which all p-adic absolute value less than r, the series diverges.
- The radius of convergence is given by $r = (\limsup a_n^{1/n})^{-1}$

From Power Series to Functions

We define discs as follows:

- Open disc: The open disc of radius r centered at a is defined to be $D\left(a;r^{-}\right):=\{z\in\mathbb{Q}_{p}\mid |z-a|_{p}< r\}$
- Closed disc: The closed disc of radius r centered at a is defined to be $D\left(a;r\right):=\{z\in\mathbb{Q}_{p}\mid\left|z-a\right|_{p}\leqslant r\}$

We have also shown that the open disc is a closed set, likewise for the closed disc is an open set. (Hint: Pick a boundary point in the open disc, and observe the relation with the non-archimedean inequality, and see if you can still apply the same argument for the closed disc). Now, we can define a function

$$f: D\left(0; r^{-}\right) \to \mathbb{Q}_{p}$$

which evaluates to

$$\lim_{n\to\infty} \left(\sum_{n\geqslant 0} a_n x^n \right)$$

for any x in the respective domain.

Continuity of f(x)

The function, $f\colon D(0;r^-)\to \mathbb{Q}_p$ is continuous. In other words, for every $y\in \mathbb{Q}_p$ and $s\in \mathbb{R}_{>0}$ such that the preimage of $D(y;s^-)$ under f is a union of open discs. Which is given by,

$$f^{-1}(D(y;s^{-})) = \{a \in D(0;r^{-}) | f(a) \in D(y;s^{-})\}$$

For a sketch-proof, fix an element of the preimage of $D(y;s^-)$ under f, and see the relation with convergence in \mathbb{Q}_p . Hence we have,

$$f^{-1}(D(y; s^{-})) = \bigcup_{|t|_{p} < r} D(t; r^{-})$$

Exponentiation in \mathbb{Q}_p

We want to define an exponential function in \mathbb{Q}_p similar to e^x in \mathbb{R} . In order to do so, recall the power series of e^x in \mathbb{R} . We have

$$e^x = \sum_{n \ge 0} \frac{x^n}{n!}$$

We similarly define $\exp(x)$ in \mathbb{Q}_p as the following power series

$$\exp(x) = \sum_{n \ge 0} \frac{x^n}{n!}$$

The $\exp(x)$ function in \mathbb{Q}_p behaves differently from that in \mathbb{R} in several ways. As an example, the radius of convergence of $\exp(x)$ in \mathbb{Q}_p is not infinity. We have proven that the radius of convergence of $\exp(x)$ is $p^{-1/(p-1)}$ in $\mathbb{Q}_p[[x]]$. (Hint: Observe the relation of $v_p(n!)$ with the digits of n over base p)

Properties of exp

Some properties of \exp remain the same in \mathbb{Q}_p , while some other differ:

- The domain of $\exp(x)$ is $D\left(0; \left(p^{-1/(p-1)}\right)^{-}\right)$. Note how this differs from the domain of \exp in $\mathbb R$ which is the whole of $\mathbb R$.

- $\forall x,y \in D\left(0;\left(p^{-1/(p-1)}\right)^{-}\right), \left|\exp(x)-\exp(y)\right|_{p} = |x-y|_{p}.$ Observe how this is neater than in \mathbb{R} . This property does not hold in \mathbb{R} .

Logarithms in \mathbb{Q}_p

We define the logarithm power series as follows:

$$\log(1+x) = \sum_{n \ge 1} (-1)^{n+1} \frac{x^n}{n}$$

replicating the power series expansion of \log in the reals. The radius of convergence of this series turns out to be 1. Moreover, when $|1+x|_p=1$, the series converges as well. Thus, the domain will be $D\left(1;1^{-}\right)$. This can also be expressed as $1+p\mathbb{Z}_p$.

Properties of the Logarithm

- The domain of $\log(x)$ is $1 + p\mathbb{Z}_p$

Logarithm as an Inverse of Exponentiation

ullet We see that when $s\in D\left(0;\left(p^{-1/(p-1)}
ight)^{-}
ight)$ we have

$$\exp(s) \in D\left(1; \left(p^{-1/(p-1)}\right)^{-}\right)$$

which is a subset of $D(1;1^-)$. Hence, the composition of \log and \exp exists.

- Moreover, $\log(\exp(s)) = s$ for all $s \in D\left(0; \left(p^{-1/(p-1)}\right)^{-}\right)$.
- When $s \in D\left(1; \left(p^{-1/(p-1)}\right)^-\right)$ we have $\log(s) \in D\left(0; \left(p^{-1/(p-1)}\right)^-\right)$. Hence the composition of \exp and \log exists.
- Moreover, $\exp(\log(s)) = s$ for all $s \in D\left(0; \left(p^{-1/(p-1)}\right)^{-}\right)$.

This shows that \log and \exp are inverse functions of each other. However, note that they are inverses only when s is in a specific local range, unlike in \mathbb{R} , where they are inverses of each other for all of \mathbb{R} .

Jun 16, 2023

Artin-Hasse Exponential Function

The Artin-Hasse Exponential is defined as follows:

$$E(x) = \exp\left(\sum_{n\geqslant 0} \frac{x^{p^n}}{p^n}\right)$$

While the above exponential seems random, it turns out that this exponential has some interesting properties. One such is the fact that $E(x) \in \mathbb{Z}_p[[x]]$. That is, E(x) turns out to be a power series in $\mathbb{Z}_p!$ This property is known as integrality. In order to prove this, we need the following Lemmas (one of which is Dwork's Lemma):

Lemma (Dwork's lemma)

Let $f(x) \in 1 + x\mathbb{Q}_p[[x]]$ be a formal power series with p-adic rational coefficients. Then $f(x) \in 1 + x\mathbb{Z}_p[[x]] \iff \frac{f(x^p)}{f(x)^p} \in 1 + px\mathbb{Z}_p[[x]]$

Artin-Hasse Exponential Function

Lemma

$$\exp(-px) \in 1 + p\mathbb{Z}_p[[x]]$$

Lemma

$$\frac{E(x^p)}{E(x)^p} = \exp(-px)$$

These 3 Lemmas imply that $E(x) \in \mathbb{Z}_p[[x]]$.

Proposition

The radius of convergence of E(x) is 1

For fun, if we have a finite extension of \mathbb{Q}_p , say $\mathbb{Q}_p(\sqrt{-p})$, does $E(\sqrt{p})$ converges? $E(\frac{1}{\sqrt{p}})$ converges? What do you think will be the radius of convergence of E(x) in $\mathbb{Q}_p(\sqrt{-p})$ be?

Research Part of Artin-Hasse Exponential Function

Theorem (Lindemann)

Let $\alpha \in \mathbb{C}$ be algebraic $\Longrightarrow \exp(\alpha)$ is transcendental. True for $\alpha \in \mathbb{Z}_p$ in the domain of the p-adic exponential.

It is not known if it is also true or false for E(x)! Now, let's reduce E(x) $\mod p$, and get $E_p(x) \in \mathbb{F}_p[[x]]$. Let $\mathbb{F}_p(x)$ be the field of rational functions over p, then it is not known whether E(x) is algebraic over $\mathbb{F}_p(x)$. One motivation to prove this is the following theorem:

Theorem (Christol, 1979)

A formal power series $f(x) = \sum_{n \geqslant 0} b_n x^n \in \mathbb{F}_q[[x]]$ is algebraic over $\mathbb{F}_q(x)$ (field of rational functions) $\iff (b_n)$ is a q-automatic sequence.

Can you create a p-analogue for this q-automatic sequence from Christol?

Research Part of Artin-Hasse Exponential Function

Let $\overline{\mathbb{Q}_p}$ denote the algebraic closure of \mathbb{Q}_p . The algebraic closure of a field is an extension of the field in which every polynomial equation with coefficients in the field has a root in the extension. In simple terms, it adds all the missing algebraic solutions to polynomial equations.

We have the following theorem:

Theorem (Baker)

Let $\lambda \in \mathbb{C}$ be non-zero such that $\exp(\lambda) \in \overline{\mathbb{Q}_p}$. Then for any pair of rational numbers (a,b), not both zero, we have $a+b\lambda > H^{-C}$ (for some constant C, and H is the max height of (a,b))

The challenge is to formulate a p-analogue of this theorem.